JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (2): 17-27.doi: 10.6040/j.issn.1671-9352.0.2020.236

Previous Articles    

Optimal granularity selection based on minimum cost of extension domain change

LI Min1,2,3, YANG Ya-feng1,2,3, LEI Yu4, LI Li-hong1,2,3*   

  1. 1. College of Science, North China University of Science and Technology, Tangshan 063210, Hebei, China;
    2. Hebei Key Laboratory of Data Science and Application, Tangshan 063210, Hebei, China;
    3. Tangshan Key Laboratory of Data Science, Tangshan 063210, Hebei, China;
    4. College of Electrical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
  • Published:2021-01-21

Abstract: Aiming at the problem that the cost of dynamic change of decision domain is seldom involved in the current optimal granularity selection algorithm, the extension set method is introduced, and the optimal granularity selection model based on the minimum cost of change of extension domain is proposed by combining the three-way decision. Firstly, the index grade discretization data table is determined by extension evaluation method, and the weight is used as the particle to carry out granulation, and the granular space is constructed by using binary relation crossover operator. Secondly, three domains are divided by fusing three decisions, and five domains of extension set are determined based on the dynamic changes of the three domains. Then, the measurement method of extension domain change is studied, the cost matrix is constructed, and the optimal granular layer is determined by the minimum cost of extension domain change. The model considers both static and dynamic characteristics comprehensively, and provides a new way to choose the optimal granularity. Finally, taking the data of water resources carrying capacity in Heilongjiang Province as an example, the validity of the model is verified, and the sensitivity analysis is carried out by using classification and regression trees. The results show that the model has good generalization.

Key words: granularity selection, three-way decision, extension set, change cost matrix, water resources carrying capacity

CLC Number: 

  • TP181
[1] 史进玲, 张倩倩, 徐久成. 多粒度决策系统属性约简的最优粒度选择[J]. 计算机科学, 2018, 45(2):152-156. SHI Jinling, ZHANG Qianqian, XU Jiucheng. Optimal granularity selection of attribute reduction in multi-granularity decision system[J]. Computer Science, 2018, 45(2):152-156.
[2] 顾沈明, 陆瑾璐, 吴伟志, 等. 广义多尺度决策系统的局部最优粒度选择[J]. 山东大学学报(理学版), 2018, 53(8):1-8. GU Shenming, LU Jinlu, WU Weizhi, et al. Local optimal granularity selection of generalized multi-scale decision-making system[J]. Journal of Shandong University(Natural Science), 2018, 53(8):1-8.
[3] 梁美社, 米据生, 侯成军, 等. 基于局部广义多粒度粗糙集的多标记最优粒度选择[J]. 模式识别与人工智能, 2019, 32(8):718-725. LIANG Meishe, MI Jusheng, HOU Chengjun, et al. Multi-label optimal granularity selection based on local generalized multi-granularity rough set[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(8):718-725.
[4] XU Weihua, LI Wentao, ZHANG Xiaotao, et al. Generalized multi-granulation rough sets and optimal granularity selection[J]. Granular Computing, 2017, 2(4):271-288.
[5] 吴伟志, 陈超君, 李同军, 等. 不协调多粒度标记决策系统最优粒度的对比[J]. 模式识别与人工智能, 2016, 29(12):1095-1103. WU Weizhi, CHEN Chaojun, LI Tongjun, et al. Comparison of optimal granularity of inconsistent multi-granularity marking decision system[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(12):1095-1103.
[6] 廖淑娇, 朱清新, 梁锐. 测试代价受限下数据的属性和粒度选择方法[J]. 计算机工程与科学, 2018, 40(8):1468-1474. LIAO Shujiao, ZHU Qingxin, LIANG Rui. Data attribute and granularity selection method under test cost constraint[J]. Computer Engineering and Science, 2018, 40(8):1468-1474.
[7] 铁文彦, 范敏, 李金海. 对象更新环境下的多粒度决策系统的最优粒度选择[J]. 计算机科学, 2018, 45(1):113-117, 121. TIE Wenyan, FAN Min, LI Jinhai. Optimal granularity selection of multi-granularity decision-making system under object renewal environment[J]. Computer Science, 2018, 45(1):113-117,121.
[8] LIAO Shujiao, ZHU Qingxin, QIAN Yuhua, et al. Feature-granularity selection with variable costs for hybrid data[J]. Soft Computing, 2019, 23(24):13105-13126.
[9] 顾沈明, 张昊, 吴伟志, 等. 多标记序决策系统中基于局部最优粒度的规则获取[J]. 南京大学学报(自然科学版), 2017, 53(6):1012-1022. GU Shenming, ZHANG Hao, WU Weizhi, et al. Rule acquisition based on local optimal granularity in multi-label order decision system[J]. Journal of Nanjing University(Natural Science), 2017, 53(6):1012-1022.
[10] 陈丽芳, 代琪, 付其峰. 基于粒计算的极限学习机模型设计与应用[J]. 计算机科学, 2018, 45(10):59-63. CHEN Lifang, DAI Qi, FU Qifeng. Design and application of extreme learning machine model based on granular computing[J]. Computer Science, 2018, 45(10):59-63.
[11] YANG Jie, WANG Guoyin, ZHANG Qinghua, et al. Optimal granularity selection based on cost-sensitive sequential three-way decision with rough fuzzy sets[J]. Knowledge-Based Systems, 2019, 163:131-144.
[12] 张清华, 刘凯旋, 高满. 基于代价敏感的粗糙集近似集与粒度寻优算法[J]. 控制与决策, 2020, 35(9):2070-2080. ZHANG Qinghua, LIU Kaixuan, GAO Man. Research on approximate set of rough set and granularity optimization algorithm based on cost sensitivity[J]. Control and Decision, 2020, 35(9): 2070-2080.
[13] ZHANG Xueqiu, ZHANG Qinghua, CHENG Yunlong, et al. Optimal scale selection by integrating uncertainty and cost-sensitive learning in multi-scale decision tables[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(5):1095-1114.
[14] 杨春燕, 蔡文. 可拓学与矛盾问题智能化处理[J]. 科技导报, 2014, 32(36):15-20. YANG Chunyan, CAI Wen. Extenics and intelligent treatment of contradictions[J]. Science and Technology Herald, 2014, 32(36):15-20.
[15] 项忠彪. 基于顾客满意度的创新产品动态管理机制研究[D]. 杭州:浙江大学, 2013. XIANG Zhongbiao. Research on dynamic management mechanism of innovative products based on customer satisfaction[D]. Hangzhou:Zhejiang University, 2013.
[16] 赵燕伟, 朱芬, 桂方志, 等. 融合可拓关联函数的密度峰值聚类算法[J]. 小型微型计算机系统, 2019, 40(12):2512-2518. ZHAO Yanwei, ZHU Fen, GUI Fangzhi, et al. Density peak clustering algorithm based on extension correlation function[J]. Miniature Microcomputer System, 2019, 40(12):2512-2518.
[17] 李桥兴, 杨春燕. 可拓集无量纲一维关联函数[J]. 系统工程, 2014, 32(11):154-158. LI Qiaoxing, YANG Chunyan. Dimensionless one-dimensional correlation function of extension set[J]. System Engineering, 2014, 32(11):154-158.
[18] 付净, 聂方超, 刘虹, 等. 化工企业安全管理体系评估指标集的构建及实证分析[J]. 安全与环境工程, 2020, 27(1):126-132. FU Jing, NIE Fangchao, LIU Hong, et al. Construction and empirical analysis of evaluation index set of safety management system in chemical enterprises[J]. Safety and Environmental Engineering, 2020, 27(1):126-132.
[19] 崔春生, 王梦冉, 王国成. 一种基于可拓学的电子商务内容推荐算法研究[J]. 运筹与管理, 2018, 27(6):75-81. CUI Chunsheng, WANG Mengran, WANG Guocheng. An E-commerce content recommendation algorithm based on extenics[J]. Operations Management, 2018, 27(6):75-81.
[20] 鲁佳慧, 唐德善. 基于PSR和物元可拓模型的水资源承载力预警研究[J]. 水利水电技术, 2019, 50(1):58-64. LU Jiahui, TANG Deshan. Research on early warning of water resources carrying capacity based on PSR and matter-element extension model[J]. Water Resources and Hydropower Technology, 2019, 50(1):58-64.
[21] 仇国芳, 王小宁. 基于三支决策的医院分级诊疗决策研究[J]. 河南师范大学学报(自然科学版), 2018, 46(3):106-111. QIU Guofang, WANG Xiaoning. Research on hospital grading diagnosis and treatment decision based on three-way decision[J]. Journal of Henan Normal University(Natural Science), 2018, 46(3):106-111.
[22] 王洪伟, 吴家春, 蒋馥. 基于可拓集的决策模型研究[J]. 计算机科学, 2003(8):132-135. WANG Hongwei, WU Jiachun, JIANG Fu. Research on decision model based on extension set[J]. Computer Science, 2003(8):132-135.
[23] 刘维. 基于可拓学的安全评价方法研究[D]. 淮南:安徽理工大学, 2013. LIU Wei. Research on safety evaluation method based on extenics[D]. Huainan:Anhui University of Science and Technology, 2013.
[24] WANG Changzhong, HE Qiang, SHAO Mingwen, et al. A unified information measure for general binary relations[J]. Knowledge-Based Systems, 2017, 135(1):18-28.
[25] 宋飞. 可拓分析法的朝阳市地下水质量评价[J]. 黑龙江水利科技, 2019, 47(2):63-66. SONG Fei. Evaluation of groundwater quality in Chaoyang City by extension analysis method[J]. Heilongjiang Water Resources Science and Technology, 2019, 47(2):63-66.
[26] 方宇, 闵帆, 刘忠慧, 等. 序贯三支决策的代价敏感分类方法[J]. 南京大学学报(自然科学版), 2018, 54(1):148-156. FANG Yu, MIN Fan, LIU Zhonghui, et al. Cost-sensitive classification method of sequential decision-making[J]. Journal of Nanjing University(Natural Science), 2018, 54(1):148-156.
[1] Ying YU,Xin-nian WU,Le-wei WANG,Ying-long ZHANG. A multi-label three-way classification algorithm based on label correlation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 81-88.
[2] JI Ru-ya, WEI Ling, REN Rui-si, ZHAO Si-yu. Pythagorean fuzzy three-way concept lattice [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(11): 58-65.
[3] LIU Guo-tao, ZHANG Yan-ping, XU Chen-chu. Three-way decisions model based on the optimal center covering algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 105-110.
[4] ZHANG Cong, YU Hong. An incremental three-way decisions soft clustering algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 40-47.
[5] TIAN Hai-long, ZHU Yan-hui, LIANG Tao, MA Jin, LIU Jing. Research on identificating Chinese micro-blog opinion sentence based on three-way decisions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 58-65.
[6] ZHANG Li-bo, LI Hua-xiong, ZHOU Xian-zhong, HUANG Bing. Multi-granularity cost-sensitive three-way decision for face recognition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 48-57.
[7] DU Li-na, XU Jiu-cheng, LIU Yang-yang, SUN Lin. Research on the evaluation of venture investment based on the risk minimization of three-way decision [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 66-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!