JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (3): 67-76.doi: 10.6040/j.issn.1671-9352.4.2020.218
YANG Ting1,2, ZHU Heng-dong1, MA Ying-cang1, WANG Yi-rui2, YANG Xiao-fei1*
CLC Number:
[1] JAIN A K, MURTY M N, FLYNN P J. Data clustering: a review[J]. ACM Computing Survey, 1999, 31(3):264-323. [2] MACEDO R, DUARTE R. Trends of multidrug-resistant tuberculosis clustering in Portugal[J]. ERJ Open Research, 2019, 5(1):00151-00155. [3] 李玲俐. 谱聚类算法及其应用综述[J]. 软件导刊, 2016, 15(7):54-56. LI Lingli. Overview of spectral clustering algorithm and its application[J]. Software Guide, 2016, 15(7):54-56. [4] BIAN Z, ISHIBUCHI H, SHITONG W. Joint learning of spectral clustering structure and fuzzy similarity matrix of data[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(1):31-44. [5] SHI Jianbo, MALIK Jitendra. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905. [6] NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm [C] //Advances in Neural Information Processing Systems. Cambridge: NIPS, 2001: 849-856. [7] XU D, TIAN Y. A comprehensive survey of clustering algorithms[J]. Annals of Data Science, 2015, 2(2):165-193. [8] JIA Hong, DING Shifei, XU Xinzheng. The latest research progress on spectral clustering[J]. Neural Computing and Applications, 2014, 24(1):1447-1486. [9] 秦悦, 丁世飞. 半监督聚类综述[J]. 计算机科学, 2019, 46(9):15-21. QIN Yue, DING Shifei. Review of semi-supervised clustering[J]. Computer Science, 2019, 46(9):15-21. [10] WAGSTAFF K, CARDIE C. Clustering with instance-level constraints [C] //Proceedings of 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000: 1097-1103. [11] 李晁铭, 徐圣兵, 郝志峰. 基于成对约束的交叉熵半监督聚类算法[J]. 模式识别与人工智能, 2017, 30(7):598-608. LI Chaoming, XU Shengbing, HAO Zhifeng. Cross entropy semi-supervised clustering algorithm based on paired constraints[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(7):598-608. [12] 刘友超, 张曦煌. 基于密度自适应邻域相似图的半监督谱聚类[J]. 计算机应用研究, 2020, 37(9):2604-2609. LIU Youchao, ZHANG Xinhuang. Semi-supervised spectral clustering based on density adaptive neighborhood similarity map[J]. Computer Application Research, 2020, 37(9):2604-2609. [13] 徐达宇, 郁莹珺, 冯海林, 等. 基于约束优化传播的改进大规模数据半监督式谱聚类算法[J]. 计算机应用研究, 2018, 35(5):1325-1330. XU Dayu, YU Yingjun, FENG Hailin, et al. Improved semi-supervised spectral clustering algorithm for large-scale data based on constrained optimization propagation[J]. Computer Application Research, 2008, 35(5):1325-1330. [14] BASU S, BANERJEE A, MOONEY R. Semi-supervised clustering by seeding [C] //Proceedings of 19th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2002: 19-26. [15] HONG D F, YOKOYA N, CHANUSSOT J. Learning to propagate labels on graphs: an iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction[J]. Journal of Photogrammetry and Remote Sensing: Official Publication of the International Society for Photogrammetry and Remote Sensing, 2019, 158:35-49. [16] BACH F, JORDAN M I. Learning spectral clustering[C] //Proceedings of Conference and Workshop on Neural Information Processing Systems. Vancouver: NIPS, 2003: 305-312. [17] NIE F, HUANG H, CAI X, et al. Efficient and robust feature selection via joint L2,1-norms minimization [C] //Proceedings of Neural Information Processing Systems. Vancouver: NIPS, 2010: 1813-1821. [18] GUO S, CUI X L, LI Y S. Subspace clustering guided convex nonnegative matrix factorization[J]. Neurocomputing, 2018, 292:38-48. [19] NIE F, WANG X, JORDAN M I, et al. The constrained Laplacian rank algorithm for graph-based clustering[C] //Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. [S.l] : AAAI, 2016: 969-1976. [20] NIE F, WANG X, HUANG H. Clustering and projected clustering with adaptive neighbors [C] //Proceedings of ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. [S.l] : ACM, 2014: 977-986. [21] ZHANG X, LI J, YU H. Local density adaptive similarity measurement for spectral clustering[J]. Pattern Recognition Letters, 2011, 32(2):352-358. [22] KULIS B, BASU S, DHILLON I. Semi-supervised graph clustering: a kernel approach[J]. Machine Learning, 2009, 74(1):1-22. [23] 白福均, 高建瓴, 宋文慧. 半监督模糊聚类算法的研究与改进[J]. 通信技术, 2018, 317(5):71-75. BAI Fujun, GAO Jianling, SONG Wenhui. Research and improvement of semi-supervised fuzzy clustering algorithm[J]. Communication Technology, 2018, 317(5):71-75. |
[1] | ZHANG Peng, WANG Su-ge, LI De-yu, WANG Jie. A semi-supervised spam review classification method based on heuristic rules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 44-51. |
[2] | SU Feng-long, XIE Qing-hua, HUANG Qing-quan, QIU Ji-yuan, YUE Zhen-jun. Semi-supervised method for attribute extraction based on transductive learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 111-115. |
[3] | DU Hong-le, ZHANG Yan, ZHANG Lin. Intrusion detection on imbalanced dataset [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 50-57. |
|