JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (8): 105-110.doi: 10.6040/j.issn.1671-9352.0.2021.160

Previous Articles    

PGF-modules and strongly semi-Gorenstein-projective modules

BAI Jiu-hong, LIANG Li*   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2021-08-09

Abstract: Let SSGP denote the class of all strongly semi-Gorenstein-projective modules. Some relations between PGF-modules and strongly semi-Gorenstein-projective modules are given, and over an arbitrary ring R, SSGP∩PGF^~=PGF is proved. It is got that SSGP=PGF if and only if SSGP⊆PGF^~, where PGF is the class of all PGF-modules, and PGF^~ is the class of all R-modules with finite PGF-dimension. Finally, the finitistic PGF-dimension of a ring R is equal to the finitistic projective dimension is proved.

Key words: PGF-module, strongly semi-Gorenstein-projective module, finitistic PGF-dimension, finitistic projective dimension

CLC Number: 

  • O154.2
[1] ŠAROCH J, ŠTOVÍCEK J. Singular compactness and definability for Σ-cotorsion and Gorenstein modules[J]. Selecta Mathematica, 2020, 26(2):1-40.
[2] IACOB A. Projectively coresolved Gorenstein flat and Ding projective modules[J]. Communications in Algebra, 2020: 1-11.
[3] RINGEL C M, ZHANG Pu. Gorenstein-projective and semi-Gorenstein-projective modules[J]. Algebra Number Theory, 2020, 14(1):1-36.
[4] ENOCHS E E, JENDA O M G. Relative homological lgebra[M] // De Gruyter Expositions in Mathematics, Vol 30. New York: Walter de Gruyter, 2000.
[5] DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein flat modules[J]. Journal of the Australian Mathematical Society, 2009, 86(3):323-338.
[6] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1/3):167-193.
[1] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[2] GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21.
[3] CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14-16.
[4] . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6.
[5] LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91.
[6] WANG Xiao-qing, LIANG Li. Strongly cotorsion modules under faithfully flat co-base change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 92-94.
[7] YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86.
[8] XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80.
[9] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[10] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91.
[11] XIE Zong-zhen, ZHANG Xiao-jin. On algebras with all τ-rigid modules projective [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 16-20.
[12] CHENG Hai-xia, YIN Xiao-bin. Gorenstein injective objects in Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 79-84.
[13] CHEN Xiu-li, CHEN Jian-long. Copure projective dimensions under Hopf extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 7-10.
[14] LUO Xiao-qiang, TAN Ling-ling, XING Jian-min. On homological properties of C-torsionless and C-reflexive modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 72-79.
[15] ZHANG Li-ying, YANG Gang. Cartan-Eilenberg Gorenstein AC-cohomology dimension of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!