JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (9): 96-110.doi: 10.6040/j.issn.1671-9352.0.2020.458
LI Wei-zhi, LI Wan-shan*, LI Jian-liang
CLC Number:
[1] LI Jun, LIU Kou, YAN Shengjun, et al. Application of thermal plasma technology for the treatment of solid wastes in China: an overview[J]. Waste Management, 2016, 58:260-269. [2] SAMAL S. Thermal plasma technology: the prospective future in material processing[J]. Journal of Cleaner Production, 2016, 142(4):3131-3150. [3] DU Fei, HUANG Peilin, JI Jinzu. Study and optimization on the scattering characteristic of two-dimensional metal airfoil covered with plasma using ADE-FDTD[J]. Optik-International Journal for Light and Electron Optics, 2017, 147:224-231. [4] PERNET S, FERRIERES X, COHEN G. High spatial order finite element method to solve Maxwells equations in time domain[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(9):2889-2899. [5] LI Jichun, CHEN Yitung. Analysis of a time-domain finite element method for 3-D Maxwells equations in dispersive media[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195(33/34/35/36):4220-4229. [6] YEE K S. Numerical solution of initial boundary value problems involving Maxwells equation in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3):302-307. [7] NAMIKI T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE Transactions on Microwave Theory & Techniques, 1999, 47(10):2003-2007. [8] SONG Wanjun, ZHANG Hou. Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma[J]. Journal of Computational Physics, 2017, 349:122-136. [9] ZHAO Anping. A novel implementation for two-dimensional unconditionally stable FDTD method[J]. Microwave and Optical Technology Letters, 2003, 38(6):457-462. [10] LEE J, FORNBERG B. A split step approach for the 3-D Maxwells equations[J]. Journal of Computational & Applied Mathematics, 2003, 158(2):485-505. [11] SHIBAYAMA J, MURAKI M, YAMAUCHI J, et al. Efficient implicit FDTD algorithm based on locally one-dimensional scheme[J]. Electronics Letters, 2005, 41(19):1046-1047. [12] NGUYEN D D, ZHAO S. High order FDTD methods for transverse magnetic modes with dispersive interfaces[J]. Applied Mathematics & Computation, 2014, 226:699-707. [13] WANG Bo, SUN Tongjun, LIANG Dong. The conservative and fourth-order compact finite difference schemes for regularized long wave equation[J]. Journal of Computational & Applied Mathematics, 2019, 356:98-117. [14] HIRONO T, LUI W, SEKI S, et al. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator[J]. IEEE Transactions on Microwave Theory & Techniques, 2001, 49(9):1640-1648. [15] LIAO Honglin, SUN Zhizhong, SHI Hansheng. Error estimate of fourth-order compact scheme for linear Schrödinger equations[J]. SIAM Journal on Numerical Analysis, 2010, 47(6):4381-4401. [16] LUO Zhendong, GAO Junqiang. A POD reduced-order finite difference time-domain extrapolating scheme for the 2D Maxwell equations in a lossy medium[J]. Journal of Mathematical Analysis & Applications, 2016, 444(1):433-451. [17] JIA J T, SOGABE T, LI S M. A generalized symbolic Thomas algorithm for the solution of opposite-bordered tridiagonal linear systems[J]. Journal of Computational & Applied Mathematics, 2015, 290:423-432. [18] GAO Liping. Stability and super convergence analysis of ADI-FDTD for the 2D Maxwell equations in a lossy medium[J]. Acta Mathematica Scientia, 2012, 32(6):2341-2368. [19] LIAO Honglin, SUN Zhizhong. Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations[J]. Numerical Methods for Partial Differential Equations, 2010, 26(1):37-60. |
|