JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (1): 25-30.doi: 10.6040/j.issn.1671-9352.0.2021.798

Previous Articles    

Consistency of wavelet estimator for regression model with mixed noise

HUANG Qin-mei, KOU Jun-ke*   

  1. School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • Published:2023-02-12

Abstract: For the problem of regression estimations with mixed noise, a linear wavelet estimator is constructed by wavelet method. The Lp(1≤p<∞) consistency of wavelet estimator is proved without any smooth conditions of the regression function.

Key words: wavelet, regression estimation, consistency, mixed noise

CLC Number: 

  • O212.7
[1] CHESNEAU C, EI KOLEI S, KOU J, et al. Nonparametric estimation in a regression model with additive and multiplicative noise[J]. Journal of Computational and Applied Mathematics, 2020, 380:112971.
[2] DELAIGLE A, MEISTER A. Nonparametric regression estimation in the heteroscedastic errors-in-variables problem[J]. Journal of the American Statistical Association, 2007, 102(480):1416-1426.
[3] CHEN Zhiyong, WANG Haibin, WANG Xunjun. The consistency for the estimator of nonparametric regression model based on martingale difference errors[J]. Statistical Papers, 2016, 57(2):451-469.
[4] CHESNEAU C, NAVARRO F. On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator[J]. Communications in Statistics-Theory and Methods, 2017, 46(11):5643-5655.
[5] CHICHIGNOUD M. Minimax and minimax adaptive estimation in multiplicative regression: locally Bayesian approach[J]. Probability Theory and Related Fields, 2012, 153(3):543-586.
[6] CHAUBEY Y P, CHESNEAU C, DOOSTI H. Adaptive wavelet estimation of a density from mixtures under multiplicative censoring[J]. Statistics, 2015, 49(3):638-659.
[7] YANG Yujiao, XU Yuhang, SONG Qiongxia. Spline confidence bands for variance functions in nonparametric time series regressive models[J]. Journal of Nonparametric Statistics, 2012, 24(3):699-714.
[8] COMTE F, GENON-CATALOT V. Regression function estimation on non compact support in an heteroscesdastic model[J]. Metrika, 2020, 83(1):93-128.
[9] CHESNEAU C, KOU Junke, NAVARRO F. Linear wavelet estimation in regression with additive and multiplicative noise[C] // Nonparametric Statistics, [S.l.] : Springer, Cham, 2020, 339:135-144.
[10] DAUBECHIES I. Ten lecture on wavelets[M]. Philadelphia: SIAM, 1992: 120-210.
[11] HÄRDLE W, KERKYACHARIAN G, PICARD D, et al. Wavelets, approximation and statistical applications[M]. New York: Springer, 1998: 97-120.
[12] GENG Zijuan, WANG Jinru. The mean consistency of wavelet density estimators[J]. Journal of Inequalities and Applications, 2015, 111:1-14.
[1] YAN Chen-xu, SHAO Hai-jian, DENG Xing. Multihigh order target detection method based on YOLOv3 model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 20-30.
[2] CHANG Li-na, WEI Ling. Rules acquisition based on OE-approximate concept lattice in incomplete formal decision contexts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(11): 31-37.
[3] CAO Kai-kai. Wavelet estimation for anisotropic density functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 99-105.
[4] GAI Xiao-hua, GUO Xue-jun, FENG Jin-shun, CHEN Qing-jiang, CHENG Zheng-xing. Decomposition for L2(Rn)by subspaces composed of high-dimensional tight framelet packets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 34-42.
[5] LI Yong-ming, NIE Cai-ling, LIU Chao, GUO Jian-hua. Consistency of estimator of nonparametric regression function for arrays of rowwise NSD [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 69-74.
[6] HU Xue-ping, ZHANG Hong-mei. Convergence properties of the kernel-type density estimator under WOD dependent samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 21-25.
[7] LI Yong-ming, DENG Shao-jian, JIANG Wei-hong. Consistencies of recursive estimator of a probability density for extended negatively dependent samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 54-59.
[8] WU Da-yong, LI Feng. Maximum empirical likelihood estimation in nonlinear semiparametric regression models with missing data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 20-23.
[9] CHEN Yi-ming, KE Xiao-hong, HAN Xiao-ning, SUN Yan-nan, LIU Li-qing. Wavelets method for solving system of fractional differential equations and the convergence analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 67-74.
[10] WU Xin-ye, WU Qun-ying. The r-th rate of consistency in kernel density estimation for #br# φ-mixed random censored samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 105-110.
[11] CUI Ruo-fei, LU Li-qian, ZHOU Wei-wei, LI Wen-hao, HAN Qing-yu, GAO Yuan-jin, LI Zeng-yong*. Correlation analysis between cerebral oxygen and arterial #br# blood pressure signals based on cross wavelet analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 39-43.
[12] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors [J]. J4, 2013, 48(1): 83-88.
[13] YE Cai-yuan, WU Qun-ying*, WU Xin-ye. Consistency NA samples kernel density estimation for censored data [J]. J4, 2013, 48(09): 40-45.
[14] YIN Jun-cheng1,2, CAO Huai-xin1. Wavelet preservers on the Hilbert space L2(R) [J]. J4, 2012, 47(4): 57-61.
[15] GENG Wan-hai, CHEN Yi-ming, LIU Yu-feng, WANG Xiao-juan. The approximation of definite integration by using Haar wavelet and operator matrix [J]. J4, 2012, 47(4): 84-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!