JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (1): 16-24.doi: 10.6040/j.issn.1671-9352.0.2021.788

Previous Articles    

Stability and Hopf bifurcation of diffusive predator-prey system with Holling-Ⅲ type functional response

HUO Lin-jie*, ZHANG Cun-hua   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2023-02-12

Abstract: This paper considers a predator-prey reaction-diffusion system with Holling-Ⅲ type functional response function. By analyzing the distribution in the complex plane of the roots of the eigenvalue problem of the linearized system at the constant positive equilibrium solution, the stability and Hopf bifurcation of the constant positive equilibrium solution are analyzed.

Key words: predator-prey reaction-diffusion system, constant positive equilibrium solution, stability, Hopf bifurcation

CLC Number: 

  • O175.26
[1] BERRYMAN A A. The origins and evolutions of predator-prey theory[J]. Ecology, 1992, 73(5):1530-1535.
[2] ROSENZWEIG M L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time[J]. Science, 1971, 171(3969):385-387.
[3] HSU Szebi. On global stability of a predator-prey system[J]. Mathematical Biosciences, 1978, 39(1/2):1-10.
[4] CHENG Kuoshung. Uniqueness of a limit cycle for a predator-prey system[J]. SIAM Journal on Mathematical Analysis, 1981, 12(4):541-548.
[5] YI Fengqi, WEI Junjie, SHI Junping. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system[J]. Differential Equations, 2009, 246(5):1944-1977.
[6] HOLLING C S. The functional response of predators to prey density and its role in mimicy and population regulation[J]. Memoirs of the Entomological Society of Canada, 1959, 91(45):385-398.
[7] 丁同仁,李承治. 常微分方程教程[M]. 北京: 高等教育出版社, 2004. DING Tongren, LI Chengzhi. Ordinary differential equations tutorial[M]. Beijing: Higher Education Press, 2004.
[8] 张昕,王金凤,史峻平,等. 一类具有一般形式的生物捕食模型的动力学性质[J]. 哈尔滨师范大学自然科学学报, 2009, 25(2):28-30. ZHANG Xin, WANG Jinfeng, SHI Junping, et al. Dynamic properties of a biological predation model with a general form[J]. Natural Science Journal of Harbin Normal University, 2009, 25(2):28-30.
[9] 张芷芬,丁同仁,黄文灶,等. 微分方程定性理论[M]. 北京:中国科学出版社, 1985. ZHANG Zhifen, DING Tongren, HUANG Wenzao, et al. Qualitative theory of differential equations[M]. Beijing: China Science Press, 1985.
[1] LI Xiao-wei, LI Gui-hua. Dynamic behaviors analysis of COVID-19 model with environmental virus effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 10-15.
[2] SUN Chun-jie, ZHANG Cun-hua. Stability and Turing instability in the diffusive Beddington-DeAngelis-Tanner predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 83-90.
[3] SU Xiao-yan, CHEN Jing-rong, YIN Hui-ling. Generalized interval-valued Pythagorean triangular fuzzy aggregation operator and application in decision making [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 77-87.
[4] PANG Yu-ting, ZHAO Dong-xia, BAO Fang-xia. Stability of the bidirectional ring networks with multiple time delays and multiple parameters [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 103-110.
[5] HAN Zhuo-ru, LI Shan-bing. Positive solutions of predator-prey model with spatial heterogeneity and hunting cooperation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 35-42.
[6] MENG Xu-dong. Stability and extended well-posedness of the solution sets for set optimization problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 98-110.
[7] JIAO Zhan, JIN Zhen. Dynamics of a spatially heterogeneous SI epidemic model with nonlocal diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(11): 70-77.
[8] ZHANG Yu-qian, ZHANG Tai-lei. An SEAIR model with relapse effect and its application in COVID-19 transmission [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 56-68.
[9] SHEN Wei, ZHANG Cun-hua. Multiple stability switches and Hopf bifurcation in a time-delay predator-prey system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 42-49.
[10] ZHU Yan-lan, ZHOU Wei, CHU Tong, LI Wen-na. Complex dynamic analysis of the duopoly game under management delegation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 32-45.
[11] ZHOU Yan, ZHANG Cun-hua. Stability and Turing instability of a predator-prey reaction-diffusion system with schooling behavior [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 73-81.
[12] WEI Li-xiang, ZHANG Jian-gang, NAN Meng-ran, ZHANG Mei-jiao. Stability and Hopf bifurcation of a flux neuron model with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 12-22.
[13] GUO Hui-ying, YANG Fu-xia, ZHANG Cui-ping. Stability of modules with finite Ext-strongly Ding projective dimensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 31-38.
[14] LU Chang-na, CHANG Sheng-xiang. Finite element method of Cahn-Hilliard equation based on adaptive moving mesh method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 17-25.
[15] Jie TANG,Ling WEI,Rui-si REN,Si-yu ZHAO. Granule description using possible attribute analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!