JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (7): 67-79.doi: 10.6040/j.issn.1671-9352.4.2022.9768

Previous Articles     Next Articles

Extension sequential three-way decision model and its application

Junyu WANG1,2,3(),Yafeng YANG1,2,3,Jingxuan XUE1,Lihong LI1,2,3,*()   

  1. 1. College of Science, North China University of Science and Technology, Tangshan 063210, Hebei, China
    2. Hebei Province Key Laboratory of Data Science and Application, Tangshan 063210, Hebei, China
    3. Tangshan Key Laboratory of Engineering Computing, Tangshan 063210, Hebei, China
  • Received:2022-08-09 Online:2023-07-20 Published:2023-07-05
  • Contact: Lihong LI E-mail:1784557362@qq.com;22687426@qq.com

Abstract:

The basic method of extension evaluation and the "rule by three divisions" decision-making idea are integrated, and the sequential idea is introduced to construct an extension sequential three-way decision model and realize the purpose of dynamic decision-making and mining optimization indicators. Firstly, the data is standardized and the weight of attributes is calculated. The extension evaluation method is used as the evaluation criterion of the three-way decisions, new decision rules are defined, and the rationality of dividing the three domains is explained. Then, according to the attribute weight, the sequential evaluation attributes of multiple granularity are obtained, the multi-stage three-way decision is made, and the decision results are given. Finally, according to the decision-making results, the indicators that cause changes in sample division are analyzed, and optimization suggestions are put forward. The model was applied to the analysis of water resources carrying capacity, and compared with the entropy weight matter-element extension decision-making model. The results show that the evaluation results obtained by using the extension sequential three-way decision model and the entropy weight matter-element extension decision-making model are basically consistent, the accuracy rate reaches 84.55%, which verifies the validity and practicability of the model.

Key words: sequential three-way decision, extension evaluation, granulation, carrying capacity of water resource

CLC Number: 

  • TP181

Fig.1

Framework of three-way decision"

Table 1

Evaluation grades and standards of water resources carrying capacity in the Yangtze River Economic Belt"

评价指标 性质 评价等级及标准值
人均水资源量/m3 80~500 500~1 000 1 000~2 000 2 000~3 000 3 000~5 500
农业用水占比/% 60~100 55~60 50~55 30~50 0~30
生活用水占比/% 0~4 4~5 5~7 7~10 10~100
人均库容量/m3 0~200 200~400 400~600 600~800 800~2 200
生态环境用水占比/% 0~1 1~2 2~3 3~5 5~10
污水处理率/% 0~40 40~50 50~80 80~95 95~100
万元GDP化学需氧量排放量/kg 3~7 2~3 1~2 0.5~1 0~0.5
建成区绿化覆盖率/% 0~20 20~30 30~35 35~40 40~50
森林覆盖率/% 0~10 10~20 20~40 40~50 50~100
湿地总面积占国土面积比重/% 0~2 2~4 4~6 6~8 8~74
造林面积/hm2 0~60 000 60 000~170 000 170 000~280 000 280 000~480 000 480 000~720 000
第一产业占GDP比值/% 20~15 13~15 10~13 5~10 0~5
第二产业占GDP比值/% 52~56 48~52 44~48 40~44 0~40
农业灌溉亩均用水量/m3 800~1 000 600~800 400~600 200~400 0~200

Table 2

Weight of each indicator"

符号指标权重
c1 湿地总面积占国土面积比重/% 0.099 0
c2 森林覆盖率/% 0.093 7
c3 造林面积/hm2 0.092 4
c4 生活用水占比/% 0.087 6
c5 农业用水占比/% 0.087 1
c6 人均库容量/m3 0.083 7
c7 第一产业占GDP比值/% 0.082 2
c8 万元GDP化学需氧量排放量/kg 0.075 5
c9 人均水资源量/m3 0.072 9
c10 第二产业占GDP比值/% 0.064 8
c11 生态环境用水占比/% 0.057 5
c12 农业灌溉亩均用水量/m3 0.052 9
c13 污水处理率/% 0.026 4
c14 建成区绿化覆盖率/% 0.024 3

Table 3

Correlation between water resources carrying capacity indicators and grades in the Yangtze River Economic Belt in 2018"

省级行政区 评价指标 关联度
K1(x0) K2(x0) K3(x0) K4(x0) K5(x0)
上海 c1 -0.989 9 -0.989 6 -0.989 3 -0.988 9 0.011 1
c2 -0.223 5 0.404 0 -0.298 0 -0.649 0 -0.719 2
江苏 c1 -0.481 1 -0.460 8 -0.438 8 -0.414 9 0.295 6
c2 -0.254 9 0.480 0 -0.240 0 -0.620 0 -0.696 0
浙江 c1 -0.449 5 -0.387 8 -0.310 4 -0.210 6 0.044 1
c2 -0.549 2 -0.492 9 -0.323 8 -0.188 6 0.188 6
安徽 c1 -0.422 6 -0.316 8 -0.163 7 0.270 0 -0.067 5
c2 -0.394 3 -0.231 9 0.432 5 -0.283 8 -0.427 0
江西 c1 -0.387 6 -0.210 1 0.275 0 -0.091 7 -0.318 8
c2 -0.568 4 -0.514 5 -0.352 7 -0.223 2 0.223 2
湖北 c1 -0.426 1 -0.326 7 -0.185 5 0.115 0 -0.028 8
c2 -0.427 8 -0.331 1 0.019 5 -0.009 8 -0.207 8
湖南 c1 -0.368 8 -0.144 1 0.405 0 -0.198 3 -0.398 8
c2 -0.444 1 -0.374 0 -0.163 2 0.031 0 -0.006 2
重庆 c1 -0.168 9 0.255 0 -0.372 5 -0.581 7 -0.686 3
c2 -0.434 4 -0.349 0 -0.067 3 0.311 0 -0.137 8
四川 c1 -0.308 4 0.195 0 -0.097 5 -0.398 3 -0.548 8
c2 -0.424 3 -0.321 6 0.098 5 -0.049 3 -0.239 4
贵州 c1 0.405 0 -0.405 0 -0.702 5 -0.801 7 -0.851 3
c2 -0.435 5 -0.351 9 -0.079 3 0.377 0 -0.124 6
云南 c1 0.285 0 -0.285 0 -0.642 5 -0.761 7 -0.821 3
c2 -0.500 4 -0.438 0 -0.250 7 -0.100 8 0.100 8

Table 4

Correlation between water resources carrying capacity indicators and grades in Shanghai from 2009 to 2018"

年份 评价指标 关联度
K1(x0) K2(x0) K3(x0) K4(x0) K5(x0)
2009 c1 -0.717 8 -0.709 7 -0.701 2 -0.692 1 0.307 9
c2 0.059 0 -0.059 0 -0.529 5 -0.764 8 -0.811 8
2010 c1 -0.717 8 -0.709 7 -0.701 2 -0.692 1 0.307 9
c2 0.059 0 -0.059 0 -0.529 5 -0.764 8 -0.811 8
2011 c1 -0.717 8 -0.709 7 -0.701 2 -0.692 1 0.307 9
c2 0.059 0 -0.059 0 -0.529 5 -0.764 8 -0.811 8
2012 c1 -0.717 8 -0.709 7 -0.701 2 -0.692 1 0.307 9
c2 0.059 0 -0.059 0 -0.529 5 -0.764 8 -0.811 8
2013 c1 -0.989 9 -0.989 6 -0.989 3 -0.988 9 0.011 1
c2 -0.064 5 0.074 0 -0.463 0 -0.731 5 -0.785 2
2014 c1 -0.989 9 -0.989 6 -0.989 3 -0.988 9 0.011 1
c2 -0.064 5 0.074 0 -0.463 0 -0.731 5 -0.785 2
2015 c1 -0.989 9 -0.989 6 -0.989 3 -0.988 9 0.011 1
c2 -0.064 5 0.074 0 -0.463 0 -0.731 5 -0.785 2
2016 c1 -0.989 9 -0.989 6 -0.989 3 -0.988 9 0.011 1
c2 -0.064 5 0.074 0 -0.463 0 -0.731 5 -0.785 2
2017 c1 -0.989 9 -0.989 6 -0.989 3 -0.988 9 0.011 1
c2 -0.064 5 0.074 0 -0.463 0 -0.731 5 -0.785 2
2018 c1 -0.989 9 -0.989 6 -0.989 3 -0.988 9 0.011 1
c2 -0.223 5 0.404 0 -0.298 0 -0.649 0 -0.719 2

Table 5

Evaluation values of water resources carrying capacity in the Yangtze River Economic Belt in 2018"

省级行政区 综合关联度 等级
K1(xi) K2(xi) K3(xi) K4(xi) K5(xi)
上海 -0.617 2 -0.312 0 -0.653 2 -0.823 7 -0.344 0
江苏 -0.371 1 -0.003 4 -0.342 1 -0.514 6 -0.186 5
浙江 -0.498 0 -0.438 9 -0.316 9 -0.199 9 0.114 4
安徽 -0.408 8 -0.275 5 0.126 2 0.000 8 -0.242 3
江西 -0.475 6 -0.358 1 -0.030 2 -0.155 6 -0.055 2
湖北 -0.426 9 -0.328 9 -0.085 8 0.054 3 -0.115 8
湖南 -0.405 4 -0.255 9 0.128 7 -0.086 8 -0.207 9
重庆 -0.298 0 -0.038 7 -0.224 1 -0.147 6 -0.419 6
四川 -0.364 8 -0.056 2 -0.002 2 -0.228 6 -0.398 3
贵州 -0.003 7 -0.379 2 -0.399 5 -0.228 6 -0.497 9
云南 -0.096 9 -0.359 4 -0.452 0 -0.440 3 -0.372 9

Table 6

Evaluation values of water resources carrying capacity in Shanghai from 2009 to 2018"

年份 综合关联度 等级
K1(xi) K2(xi) K3(xi) K4(xi) K5(xi)
2009 -0.340 1 -0.393 3 -0.617 7 -0.727 4 -0.236 5
2010 -0.340 1 -0.393 3 -0.617 7 -0.727 4 -0.236 5
2011 -0.340 1 -0.393 3 -0.617 7 -0.727 4 -0.236 5
2012 -0.340 1 -0.393 3 -0.617 7 -0.727 4 -0.236 5
2013 -0.539 9 -0.472 4 -0.733 4 -0.863 8 -0.376 1
2014 -0.539 9 -0.472 4 -0.733 4 -0.863 8 -0.376 1
2015 -0.539 9 -0.472 4 -0.733 4 -0.863 8 -0.376 1
2016 -0.539 9 -0.472 4 -0.733 4 -0.863 8 -0.376 1
2017 -0.539 9 -0.472 4 -0.733 4 -0.863 8 -0.376 1
2018 -0.617 2 -0.312 0 -0.653 2 -0.823 7 -0.344 0

Fig.2

Results of the first decision on water resources carrying capacity"

Fig.3

Results of the second decision on water resources carrying capacity"

Fig.4

Results of the third decision on water resources carrying capacity"

Fig.5

Results of the fourth decision on water resources carrying capacity"

Fig.6

Results of the fifth decision on water resources carrying capacity"

Fig.7

Results of the sixth decision on water resources carrying capacity"

Fig.8

Results of the seventh decision on water resources carrying capacity"

Fig.9

Comparison of decision-making results"

1 刘盾, 李天瑞, 杨新, 等. 三支决策-基于粗糙集与粒计算研究视角[J]. 智能系统学报, 2019, 14 (6): 1111- 1120.
LIU Dun , LI Tianrui , YANG Xin , et al. Three-way decisions: research perspectives for rough sets and granular computing[J]. CAAI Transactions on Intelligent Systems, 2019, 14 (6): 1111- 1120.
2 杨新, 李天瑞, 刘盾, 等. 基于决策粗糙集的广义序贯三支决策方法[J]. 计算机科学, 2018, 45 (10): 1- 5.
doi: 10.11896/j.issn.1002-137X.2018.10.001
YANG Xin , LI Tianrui , LIU Dun , et al. Generalized sequential three-way decisions approach based on decision-theoretic rough sets[J]. Computer Science, 2018, 45 (10): 1- 5.
doi: 10.11896/j.issn.1002-137X.2018.10.001
3 CHEN Wenbin , ZHANG Qinghua , DAI Yongyang . Sequential multi-class three-way decisions based on cost-sensitive learning[J]. International Journal of Approximate Reasoning, 2022, 146, 47- 61.
doi: 10.1016/j.ijar.2022.03.009
4 邢颖, 李德玉, 王素格. 代价敏感的序贯三支决策方法[J]. 计算机科学, 2018, 45 (10): 6- 10.
XING Ying , LI Deyu , WANG Suge . Cost-sensitive sequential three-way decision making method[J]. Computer Science, 2018, 45 (10): 6- 10.
5 JU Hengrong , PEDRYCZ W , LI Huaxiong , et al. Sequential three-way classifier with justifiable granularity[J]. Knowledge-Based Systems, 2019, 163, 103- 119.
doi: 10.1016/j.knosys.2018.08.022
6 ZHANG Qinghua , PANG Guohong , WANG Guoyin . A novel sequential three-way decisions model based on penalty function[J]. Knowledge-Based Systems, 2020, 192, 105350.
doi: 10.1016/j.knosys.2019.105350
7 钱进, 汤大伟, 洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 山东大学学报(理学版), 2022, 57 (9): 33- 45.
QIAN Jin , TANG Dawei , HONG Chengxin . Research on multi-granularity hierarchical sequential three-way decision model[J]. Journal of Shandong University (Natural Science), 2022, 57 (9): 33- 45.
8 QIAN Jin , DANG Chuangyin , YUE Xiaodong , et al. Attribute reduction for sequential three-way decisions under dynamic granulation[J]. International Journal of Approximate Reasoning, 2017, 85, 196- 216.
doi: 10.1016/j.ijar.2017.03.009
9 张清华, 庞国弘, 李新太, 等. 基于代价敏感的序贯三支决策最优粒度选择方法[J]. 电子与信息学报, 2021, 43 (10): 3001- 3009.
doi: 10.11999/JEIT200821
ZHANG Qinghu , PANG Guohong , LI Xintai , et al. Optimal granularity selection method based on cost-sensitive sequential three-way decisions[J]. Journal of Electronics and Information Technology, 2021, 43 (10): 3001- 3009.
doi: 10.11999/JEIT200821
10 SAVCHENKO A V . Sequential three-way decisions in multi-category image recognition with deep features based on distance factor[J]. Information Sciences, 2019, 489, 18- 36.
doi: 10.1016/j.ins.2019.03.030
11 蔡文. 可拓集合和不相容问题[J]. 科学探索学报, 1983, (1): 83- 97.
CAI Wen . Extension set and non-compatible problems[J]. Science Exploration, 1983, (1): 83- 97.
12 杨春燕, 蔡文, 涂序彦. 可拓学的研究、应用与发展[J]. 系统科学与数学, 2016, 36 (9): 1507- 1512.
YANG Chunyan , CAI Wen , TU Xuyan . Research, application and development on extenics[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36 (9): 1507- 1512.
13 LIU Shiliang , LI Wenping . Indicators sensitivity analysis for environmental engineering geological patterns caused by underground coal mining with integrating variable weight theory and improved matter-element extension model[J]. The Science of the Total Environment, 2019, 686, 606- 618.
doi: 10.1016/j.scitotenv.2019.04.393
14 SHAN Chengju , DONG Zengchuan , LU Debao , et al. Study on river health assessment based on a fuzzy matter-element extension model[J]. Ecological Indicators, 2021, 127 (10): 107742.
15 付光辉, 刘万山. 基于物元可拓模型的城市生态化水平评价——以江浙两省城市群为例[J]. 生态经济, 2021, 37 (11): 86- 91.
FU Guanghui , LIU Wanshan . Evaluation of urban ecological level based on the object meta-topological model: taking city clusters in Jiangsu and Zhejiang Provinces as an example[J]. Ecological Economy, 2021, 37 (11): 86- 91.
16 李东印, 孙凯旋, 王伸, 等. 基于熵权-可拓理论的智能化综采工作面安全评价[J]. 河南理工大学学报(自然科学版), 2022, 41 (3): 1- 9.
LI Dongyin , SUN Kaixuan , WANG Shen , et al. Study on safety evaluation of intelligence working face based on extension theory with entropy weight approach[J]. Journal of Henan Polytechnic University (Natural Science Edition), 2022, 41 (3): 1- 9.
17 YANG X , LI T R , FUJITA H , et al. A unified model of sequential three-way decisions and multilevel incremental processing[J]. Knowledge-Based Systems, 2017, 134, 172- 188.
18 王伟, 刘丹娜, 彭第. 基于熵值法的砂卵石地层深基坑开挖安全可拓评价[J]. 西南交通大学学报, 2021, 56 (4): 785- 791.
WANG Wei , LIU Danna , PENG Di . Extension evaluation on excavation safety of deep foundation pit in sandy cobble stratum based on entropy method[J]. Journal of Southwest Jiaotong University, 2021, 56 (4): 785- 791.
19 蔡文. 物元模型及其应用[M]. 北京: 科学技术文献出版社, 1994: 21- 25.
CAI Wen . Matter element model and its application[M]. Beijing: Scientific and Technical Documentation Press, 1994: 21- 25.
20 李敏, 杨亚锋, 雷宇, 等. 基于可拓域变化代价最小的最优粒度选择[J]. 山东大学学报(理学版), 2021, 56 (2): 17- 27.
LI Min , YANG Yafeng , LEI Yu , et al. Optimal granularity selection based on minimum cost of extension domain change[J]. Journal of Shandong University (Natural Science), 2021, 56 (2): 17- 27.
21 CUI Yi , FENG Ping , JIN Juliang , et al. Water resources carrying capacity evaluation and diagnosis based on set pair analysis and improved the entropy weight method[J]. Entropy, 2018, 20 (5): 359.
22 何刚, 夏业领, 秦勇, 等. 长江经济带水资源承载力评价及时空动态变化[J]. 水土保持研究, 2019, 26 (1): 287- 292.
HE Gang , XIA Yeling , QIN Yong , et al. Evaluation and spatial-temporal dynamic change of water resources carrying capacity in the Yangtze River Economic Belt[J]. Research of Soil and Water Conservation, 2019, 26 (1): 287- 292.
23 杨亚锋, 王红瑞, 巩书鑫, 等. 可变勾股模糊VIKOR水资源系统韧性评价调控模型及应用[J]. 水利学报, 2021, 52 (6): 633- 646.
YANG Yafeng , WANG Hongrui , GONG Shuxin , et al. Variable pythagorean fuzzy VIKOR evaluation regulation model of water resources system resilience and its application[J]. Journal of Hydraulic Engineering, 2021, 52 (6): 633- 646.
24 郭嘉伟, 张军, 陈彦. 基于熵权可拓物元模型的会宁县水土资源承载力评价[J]. 甘肃农业大学学报, 2018, 53 (6): 195- 203.
GUO Jiawei , ZHANG Jun , CHEN Yan . Water and soil resources matching patterns and carrying capacity in Huining County[J]. Journal of Gansu Agricultural University, 2018, 53 (6): 195- 203.
[1] YANG Jie, LUO Tian, LI Yang-jun. Unlabeled sequential three-way decisions model based on TOPSIS [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 41-48.
[2] ZHANG Wen-juan, LI Jin-jin, LIN Yi-dong. Graph-based granularity reduction in pessimistic multi-granulation rough set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 60-67.
[3] ZHANG Hai-yang, MA Zhou-ming, YU Pei-qiu, LIN Meng-lei, LI Jin-jin. Incremental method for approximating sets of multi-granularity rough sets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 51-61.
[4] HU Qian, MI Ju-sheng, LI Lei-jun. The fuzzy belief structure and attribute reduction based on multi-granulation fuzzy rough operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 30-36.
[5] WANG Xiao-yan, SHEN Jia-lan, SHEN Yuan-xia. Graded multi-granulation rough set based on weighting granulations and dominance relation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 97-104.
[6] LIU Ji-qin, ZHANG Tong. Granulation degree of P-sets and discernibility-discovery of P-knowledge [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 6-10.
[7] LI Shan-ping,XIAO Nai-dong,ZHAO Yu-xiao . The effect of cerium nitrate on extra-cellular polymeric substances and granulation of activated sludge [J]. J4, 2008, 43(1): 24-27 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[2] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[3] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[4] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[5] LIU Ting-ting, CHEN Zhi-yong, LI Xiao-qin*, YANG Wen-zhi. The Berry-Esseen bound for the sequence of #br# negatively associated random variables#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 101 -106 .
[6] LIU Yan-ping, WU Qun-ying. Almost sure limit theorems for the maximum of Gaussian sequences#br# with optimized weight[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 50 -53 .
[7] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[8] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[9] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[10] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .