JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 93-99.doi: 10.6040/j.issn.1671-9352.0.2023.459
TIAN Shuo1, YUAN Zhipeng2*, ZHANG Yanfang3
CLC Number:
[1] DREXHAGE K H. Influence of a dielectric interface on fluorescence decay time[J]. Journal of Luminescence, 1970(1/2): 693-701. [2] TURNER E H, LAUTERBACH K, PUGSLEY H R, et al. Detection of green fluorescent protein in a single bacterium by capillary electrophoresis with laser-induced fluorescence[J]. Analytical Chemistry, 2007, 79(2):778-781. [3] ZHANG S, XU X C, ZHANG G Y, et al. One-pot one-step synthesis of Au@SiO2 core-shell nanoparticles and their shell-thickness-dependent fluorescent properties[J]. RSC Advances, 2019, 9(31):17674-17678. [4] WANG P, HUANG B B, DAI Y, et al. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles[J]. Physical Chemistry Chemical Physics, 2012, 14(28):9813-9825. [5] HAN L, WEI H, TU B, et al. A facile one-pot synthesis of uniform core-shell silver nanoparticle@mesoporous silica nanospheres[J]. Chemical Communications, 2011, 47(30):8536-8538. [6] RYCENGA M, COBLEY C M, ZENG J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications[J]. Chemical Reviews, 2011, 111(6):3669-3712. [7] SHAFIEE A, RABIEE N, AHMADI S, et al. Core-shell nano-photocatalysts: review of materials and applications[J]. ACS Applied Nano Materials, 2022, 5(1):55-86. [8] HE Z Y, ZHANG C, MENG R W, et al. Influence of Ag@SiO2 with different shell thickness on photoelectric properties of hole-conductor-free perovskite solar cells[J]. Nanomaterials, 2020, 10(12):2364. [9] ALTANTZIS T, COUTINO-GONZALEZ E, BAEKELANT W, et al. Direct observation of luminescent silver clusters confined infaujasite zeolites[J]. ACS Nano, 2016, 10(8):7604-7611. [10] CHEN Y, MUNECHIKA K, GINGER D S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles[J]. Nano Letters, 2007, 7(3):690-696. [11] LIU B, YANG X L, JI H F. Synthesis of hollow fluorescent polymeric microspheres with movable magnetic cores[J]. Polymer International, 2010, 59:961-966. [12] 何鑫,张梅,冯晋阳,等. 金属银增强荧光的最新研究进展[J]. 稀有金属材料与工程, 2011, 40(3):559-564. HE Xin, ZHANG Mei, FENG Jinyang, et al. New research progress of metallic silver enhanced fluorescence[J]. Rare Metal Materials and Engineering, 2011, 40(3):559-564. [13] LAKOWICZ J R. Radiative decay engineering: biophysical and biomedical applications[J]. Analytical Biochemistry, 2001, 298(1):1-24. [14] LI H Q, KANG J M, YANG J H, et al. Distance dependence of fluorescence enhancement in Au nanoparticle@mesoporous silica@europium complex[J]. Journal of Physical Chemistry C, 2016, 120:16907-16912. [15] ZHANG X F, DU X Z. Carbon nanodot-decorated Ag@SiO2 nanoparticles for fluorescence and surface-enhanced Raman scattering immunoassays[J]. ACS Applied Materials & Interfaces, 2016, 8(1):1033-1040. [16] ELISEEVA S V, BÜNZLI J C G. Rare earths: jewels for functional materials of the future[J]. New Journal of Chemistry, 2011, 35(6):1165-1176. [17] LAFRATTA C N, WALT D R. Very high density sensing arrays[J]. Chemical Reviews, 2008, 108:614-637. [18] KHREIS O M, CURRY R J, SOMERTON M, et al. Infrared organic light emitting diodes using neodymium tris-(8-hydroxyquinoline)[J]. Journal of Applied Physics, 2000, 88(2):777. [19] ROSI N L, MIRKIN C A. Nanostructures inbiodiagnostics[J]. Chemical Reviews, 2005, 105(4):1547-1562. [20] SAINT-CRICQ P, WANG J Z, SUGAWARA-NARUTAKI A, et al. A new synthesis of well-dispersed, core-shell Ag@SiO2 mesoporous nanoparticles using amino acids and sugars[J]. Journal of Materials Chemistry B, 2013, 1(19):2451-2454. [21] UNSER S, BRUZAS I, HE J, et al. Localized surface plasmon resonance biosensing: current challenges and approaches[J]. Sensors, 2015, 15(7):15684-15716. [22] WANG Xueqing, WANG Xuepei, LIU Yifan, et al. Surface plasma enhanced fluorescence combined aptamer sensor based on silica modified silver nanoparticles for signal amplification detection of cholic acid[J]. Microchemical Journal, 2021, 168:106524. [23] PILLAI Z S, KAMAT P V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?[J]. Journal of Physical Chemistry B, 2004, 108(3):945-951. [24] JEONG Y, KOOK Y M, LEE K, et al. Metal enhanced fluorescence(MEF)for biosensors: general approaches and a review of recent developments[J]. Biosensors & Bioelectronics, 2018, 111:102-116. [25] ASLAN K, LEONENKO Z, LAKOWICZ J R, et al. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence[J]. The Journal of Physical Chemistry B, 2005, 109(8):3157-3162. [26] VAN VU L, LONG N N, DOANH S C, et al. Preparation of silver nanoparticles by pulse sonoelectrochemical method and studying their characteristics[J]. Journal of Physics: Conference Series, 2009, 187:012007. [27] BHANDARI P S, GOGATE P R. Adsorptive removal of sodium dodecyl sulfate using activated coconut shell based adsorbent: kinetic and thermodynamic study[J]. Desalination and Water Treatment, 2019, 165:111-123. [28] VALMALETTE J C, TAN Z Q, ABE H, et al. Raman scattering of linear chains of strongly coupled Ag nanoparticles on SWCNTs[J]. Scientific Reports, 2014, 4:5238. [29] TAN Z, ABE H, NAITO M, et al. Arrangement of palladium nanoparticles templated by supramolecular self-assembly of SDS wrapped on single-walled carbon nanotubes[J]. Chemical Communications, 2010, 46:4363-4365. [30] KIM J Y, HONG D, LEE J C, et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products[J]. Nature Communications, 2021, 12:3765. [31] SHI T, LI C P, WANG G F, et al. Multilocus sequence analysis and detection of copper ion resistance of Xanthomonas phaseoli pv. manihotis causing bacterial blight in cassava[J]. Current Issues in Molecular Biology, 2023, 45(7):5389-5402. [32] ZHAO X F, YI X B, WANG X Q, et al. Constructing efficient polyimide(PI)/Ag aerogel photocatalyst by ethanol supercritical drying technique for hydrogen evolution[J]. Applied Surface Science, 2020, 502:144187. [33] 袁亚茹. 新型芘基荧光增强探针对铁离子高选择性检测[D]. 北京: 华北电力大学, 2022. YUAN Yaru. A novel pyrene-based fluorescence enhanced probe for highly selective detection of ferric[D]. Beijing: North China Electric Power University, 2022. [34] 江云宝, 许金钩. 十二烷基磺酸钠增强的吡啶鎓对芘的荧光猝灭[J]. 化学学报, 1992, 50(6):555-559. JIANG Yunbao, XU Jingou. Sodium laurylsulfonate enhanced quenching of pyrene fluorescence by pyridinium in aqueous solution[J]. Acta Chimica Sinica, 1992, 50(6):555-559. [35] GAO S S, YANG G G, ZHANG X H, et al. β-cyclodextrin polymer-based host-guest interaction and fluorescence enhancement of pyrene for sensitive isocarbophos detection[J]. ACS Omega, 2022, 7(15):12747-12752. [36] YUAN Y R, YU L, LIU Q H, et al. Multi-dentate chelation induces fluorescence enhancement of pyrene moiety for highly selective detection of Fe(Ⅲ)[J]. Analytical Sciences, 2022, 38(8):1095-1103. [37] YU X Y, WANG K N, XING M M, et al. Structurally regular arrangement induced fluorescence enhancement and specific recognition for glutathione of a pyrene chalcone derivative[J]. Analytica Chimica Acta, 2019, 1082:146-151. |
No related articles found! |
|