JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 93-99.doi: 10.6040/j.issn.1671-9352.0.2023.459

Previous Articles     Next Articles

Preparation of copper mesh loading Ag/SDS nested-network with fluorescence enhancement performance

Shuo TIAN1(),Zhipeng YUAN2,*(),Yanfang ZHANG3   

  1. 1. Agricultural Products Quality and Safety Center of Jinan, Jinan 250100, Shandong, China
    2. Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China
    3. Dongying Science and Technology Innovation Service Center, Dongying 257091, Shandong, China
  • Received:2023-10-27 Online:2024-11-20 Published:2024-11-29
  • Contact: Zhipeng YUAN E-mail:tianshuo24@163.com;yuanzp@sdas.org

Abstract:

Appropriate distance between metal ions and fluorophore is the key to obtain high fluorescence intensity, while the tuning of the appropriate distance between them is fussy. In this paper, the carbon film of copper mesh was firstly used as the isolation layer between Ag and fluorophore, displacement reaction between AgNO3 and copper mesh was used to prepare copper mesh loading Ag/SDS nested-network, which exhibits efficient fluorescence enhancement effect.

Key words: Ag/SDS nested-network, copper mesh, carbon film, fluorescence intensity

CLC Number: 

  • O651

Fig.1

Scheme of the synthesis of Ag/SDS nested-network"

Fig.2

Structural characterization of Ag/SDS nested-network"

Fig.3

SEM image of copper mesh loading Ag/SDS nested-network"

Fig.4

XPS spectra of carbon mesh and copper mesh"

Fig.5

Fluorescence enhancement spectra of the samples"

Fig.6

Decay curve of fluorescence intensity over time for copper mesh loading Ag/SDS nested-network structure"

1 DREXHAGE K H . Influence of a dielectric interface on fluorescence decay time[J]. Journal of Luminescence, 1970, (1/2): 693- 701.
2 TURNER E H , LAUTERBACH K , PUGSLEY H R , et al. Detection of green fluorescent protein in a single bacterium by capillary electrophoresis with laser-induced fluorescence[J]. Analytical Chemistry, 2007, 79 (2): 778- 781.
doi: 10.1021/ac061778r
3 ZHANG S , XU X C , ZHANG G Y , et al. One-pot one-step synthesis of Au@ SiO2 core-shell nanoparticles and their shell-thickness-dependent fluorescent properties[J]. RSC Advances, 2019, 9 (31): 17674- 17678.
doi: 10.1039/C9RA02543J
4 WANG P , HUANG B B , DAI Y , et al. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles[J]. Physical Chemistry Chemical Physics, 2012, 14 (28): 9813- 9825.
doi: 10.1039/c2cp40823f
5 HAN L , WEI H , TU B , et al. A facile one-pot synthesis of uniform core-shell silver nanoparticle@ mesoporous silica nanospheres[J]. Chemical Communications, 2011, 47 (30): 8536- 8538.
doi: 10.1039/c1cc12718g
6 RYCENGA M , COBLEY C M , ZENG J , et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications[J]. Chemical Reviews, 2011, 111 (6): 3669- 3712.
doi: 10.1021/cr100275d
7 SHAFIEE A , RABIEE N , AHMADI S , et al. Core-shell nano-photocatalysts: review of materials and applications[J]. ACS Applied Nano Materials, 2022, 5 (1): 55- 86.
doi: 10.1021/acsanm.1c03714
8 HE Z Y , ZHANG C , MENG R W , et al. Influence of Ag@ SiO2 with different shell thickness on photoelectric properties of hole-conductor-free perovskite solar cells[J]. Nanomaterials, 2020, 10 (12): 2364.
doi: 10.3390/nano10122364
9 ALTANTZIS T , COUTINO-GONZALEZ E , BAEKELANT W , et al. Direct observation of luminescent silver clusters confined infaujasite zeolites[J]. ACS Nano, 2016, 10 (8): 7604- 7611.
doi: 10.1021/acsnano.6b02834
10 CHEN Y , MUNECHIKA K , GINGER D S . Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles[J]. Nano Letters, 2007, 7 (3): 690- 696.
doi: 10.1021/nl062795z
11 LIU B , YANG X L , JI H F . Synthesis of hollow fluorescent polymeric microspheres with movable magnetic cores[J]. Polymer International, 2010, 59, 961- 966.
doi: 10.1002/pi.2813
12 何鑫, 张梅, 冯晋阳, 等. 金属银增强荧光的最新研究进展[J]. 稀有金属材料与工程, 2011, 40 (3): 559- 564.
HE Xin , ZHANG Mei , FENG Jinyang , et al. New research progress of metallic silver enhanced fluorescence[J]. Rare Metal Materials and Engineering, 2011, 40 (3): 559- 564.
13 LAKOWICZ J R . Radiative decay engineering: biophysical and biomedical applications[J]. Analytical Biochemistry, 2001, 298 (1): 1- 24.
doi: 10.1006/abio.2001.5377
14 LI H Q , KANG J M , YANG J H , et al. Distance dependence of fluorescence enhancement in Au nanoparticle@ mesoporous silica@ europium complex[J]. Journal of Physical Chemistry C, 2016, 120, 16907- 16912.
doi: 10.1021/acs.jpcc.6b01312
15 ZHANG X F , DU X Z . Carbon nanodot-decorated Ag@ SiO2 nanoparticles for fluorescence and surface-enhanced Raman scattering immunoassays[J]. ACS Applied Materials & Interfaces, 2016, 8 (1): 1033- 1040.
16 ELISEEVA S V , BVNZLI J C G . Rare earths: jewels for functional materials of the future[J]. New Journal of Chemistry, 2011, 35 (6): 1165- 1176.
doi: 10.1039/c0nj00969e
17 LAFRATTA C N , WALT D R . Very high density sensing arrays[J]. Chemical Reviews, 2008, 108, 614- 637.
doi: 10.1021/cr0681142
18 KHREIS O M , CURRY R J , SOMERTON M , et al. Infrared organic light emitting diodes using neodymium tris-(8-hydroxyquinoline)[J]. Journal of Applied Physics, 2000, 88 (2): 777.
doi: 10.1063/1.373803
19 ROSI N L , MIRKIN C A . Nanostructures inbiodiagnostics[J]. Chemical Reviews, 2005, 105 (4): 1547- 1562.
doi: 10.1021/cr030067f
20 SAINT-CRICQ P , WANG J Z , SUGAWARA-NARUTAKI A , et al. A new synthesis of well-dispersed, core-shell Ag@ SiO2 mesoporous nanoparticles using amino acids and sugars[J]. Journal of Materials Chemistry B, 2013, 1 (19): 2451- 2454.
doi: 10.1039/c3tb20210k
21 UNSER S , BRUZAS I , HE J , et al. Localized surface plasmon resonance biosensing: current challenges and approaches[J]. Sensors, 2015, 15 (7): 15684- 15716.
doi: 10.3390/s150715684
22 WANG Xueqing , WANG Xuepei , LIU Yifan , et al. Surface plasma enhanced fluorescence combined aptamer sensor based on silica modified silver nanoparticles for signal amplification detection of cholic acid[J]. Microchemical Journal, 2021, 168, 106524.
doi: 10.1016/j.microc.2021.106524
23 PILLAI Z S , KAMAT P V . What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?[J]. Journal of Physical Chemistry B, 2004, 108 (3): 945- 951.
doi: 10.1021/jp037018r
24 JEONG Y , KOOK Y M , LEE K , et al. Metal enhanced fluorescence (MEF) for biosensors: general approaches and a review of recent developments[J]. Biosensors & Bioelectronics, 2018, 111, 102- 116.
25 ASLAN K , LEONENKO Z , LAKOWICZ J R , et al. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence[J]. The Journal of Physical Chemistry B, 2005, 109 (8): 3157- 3162.
doi: 10.1021/jp045186t
26 VAN VU L , LONG N N , DOANH S C , et al. Preparation of silver nanoparticles by pulse sonoelectrochemical method and studying their characteristics[J]. Journal of Physics: Conference Series, 2009, 187, 012007.
doi: 10.1088/1742-6596/187/1/012007
27 BHANDARI P S , GOGATE P R . Adsorptive removal of sodium dodecyl sulfate using activated coconut shell based adsorbent: kinetic and thermodynamic study[J]. Desalination and Water Treatment, 2019, 165, 111- 123.
doi: 10.5004/dwt.2019.24491
28 VALMALETTE J C , TAN Z Q , ABE H , et al. Raman scattering of linear chains of strongly coupled Ag nanoparticles on SWCNTs[J]. Scientific Reports, 2014, 4, 5238.
doi: 10.1038/srep05238
29 TAN Z , ABE H , NAITO M , et al. Arrangement of palladium nanoparticles templated by supramolecular self-assembly of SDS wrapped on single-walled carbon nanotubes[J]. Chemical Communications, 2010, 46, 4363- 4365.
doi: 10.1039/c0cc00099j
30 KIM J Y , HONG D , LEE J C , et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products[J]. Nature Communications, 2021, 12, 3765.
doi: 10.1038/s41467-021-24105-9
31 SHI T , LI C P , WANG G F , et al. Multilocus sequence analysis and detection of copper ion resistance of Xanthomonas phaseoli pv. manihotis causing bacterial blight in cassava[J]. Current Issues in Molecular Biology, 2023, 45 (7): 5389- 5402.
doi: 10.3390/cimb45070342
32 ZHAO X F , YI X B , WANG X Q , et al. Constructing efficient polyimide(PI)/Ag aerogel photocatalyst by ethanol supercritical drying technique for hydrogen evolution[J]. Applied Surface Science, 2020, 502, 144187.
doi: 10.1016/j.apsusc.2019.144187
33 袁亚茹. 新型芘基荧光增强探针对铁离子高选择性检测[D]. 北京: 华北电力大学, 2022.
YUAN Yaru. A novel pyrene-based fluorescence enhanced probe for highly selective detection of ferric[D]. Beijing: North China Electric Power University, 2022.
34 江云宝, 许金钩. 十二烷基磺酸钠增强的吡啶鎓对芘的荧光猝灭[J]. 化学学报, 1992, 50 (6): 555- 559.
JIANG Yunbao , XU Jingou . Sodium laurylsulfonate enhanced quenching of pyrene fluorescence by pyridinium in aqueous solution[J]. Acta Chimica Sinica, 1992, 50 (6): 555- 559.
35 GAO S S , YANG G G , ZHANG X H , et al. β-cyclodextrin polymer-based host-guest interaction and fluorescence enhancement of pyrene for sensitive isocarbophos detection[J]. ACS Omega, 2022, 7 (15): 12747- 12752.
doi: 10.1021/acsomega.1c07295
36 YUAN Y R , YU L , LIU Q H , et al. Multi-dentate chelation induces fluorescence enhancement of pyrene moiety for highly selective detection of Fe(Ⅲ)[J]. Analytical Sciences, 2022, 38 (8): 1095- 1103.
doi: 10.1007/s44211-022-00138-y
37 YU X Y , WANG K N , XING M M , et al. Structurally regular arrangement induced fluorescence enhancement and specific recognition for glutathione of a pyrene chalcone derivative[J]. Analytica Chimica Acta, 2019, 1082, 146- 151.
doi: 10.1016/j.aca.2019.07.052
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QIU Tao-rong, WANG Lu, XIONG Shu-jie, BAI Xiao-ming. A granular computing approach for knowledge hiding[J]. J4, 2010, 45(7): 60 -64 .
[2] XUE Qiu-fang1,2, GAO Xing-bao1*, LIU Xiao-guang1. Several equivalent conditions for H-matrix based on the extrapolated GaussSeidel iterative method[J]. J4, 2013, 48(4): 65 -71 .
[3] LIU Ji-qin, . Unionrepresentation theorem of bothbranch fuzzy set[J]. J4, 2006, 41(2): 7 -13 .
[4] WANG Qi,ZHAO Xiu-heng,LI Guo-jun . Embedding hypergraph in trees of rings[J]. J4, 2007, 42(10): 114 -117 .
[5] LIU Jian-ya and ZHAN Tao . The quadratic Waring-Goldbach problem[J]. J4, 2007, 42(2): 1 -18 .
[6] YU Xiu-qing. (σ,τ)-expansion model of P-sets and its properties#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 90 -94 .
[7] TIAN You-gong, LIU Zhuan-ling. Extremal distributions for 5-convex stochastic orderings with arbitrary discrete support and applications in actuarial sciences[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 57 -62 .
[8] LIU Ling-xia . Existence of analytic invariant curves for a planar mapping near resonance[J]. J4, 2007, 42(2): 87 -91 .
[9] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[10] MA Yuan-yuan, MENG Hui-li, XU Jiu-cheng, ZHU Ma. Normal distribution of lattice close-degree based on granular computing[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 107 -110 .