JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (5): 93-99.doi: 10.6040/j.issn.1671-9352.0.2023.287
YANG Jizhen1,2, WANG Yunpeng3*
CLC Number:
[1] PAN Hao, SUN Zhiwei. A combinatorial identity with application to Catalan numbers[J]. Discrete Mathematics, 2006, 306(16):1921-1940. [2] SUN Zhiwei, TAURASO R. New congruences for central binomial coefficients[J]. Advances in Applied Mathematics, 2010, 45(1):125-148. [3] SUN Zhiwei. Super congruences and Euler numbers[J]. Science China Mathematics, 2011, 54(12):2509-2535. [4] MAO Guoshuai, SUN Zhiwei. New congruences involving products of two binomial coefficients[J]. The Ramanujan Journal, 2019, 49(2):237-256. [5] MAO Guoshuai. On sums of binomial coefficients involving Catalan and Delannoy numbers modulo p2[J]. The Ramanujan Journal, 2018, 45(2):319-330. [6] RODRIGUEZ-VILLEGAS F. Hypergeometric families of Calabi-Yau manifolds[C] //Proceedings of the Calabi-Yau Varieties and Mirror Symmetry. Toronto: American Mathematical Society, 2003:223-231. [7] MORTENSON E. A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function[J]. Journal of Number Theory, 2003, 99(1):139-147. [8] VAN HAMME L. Some conjectures concerning partial sums of generalized hypergeometric series[J]. Lecture Notes in Pure and Applied Mathematics, 1997, 192:223-236. [9] SWISHER H. On the supercongruence conjecture of van Hamme[J]. Research in the Mathematical Sciences, 2015, 2(1):1-21. [10] HE Bing. Some congruences on harmonic numbers and binomial sums[J]. Periodica Mathematica Hungarica: Journal of the Janos Bolyai Mathematical Society, 2017, 74(1):67-72. [11] GUO Junwei. A q-analogue of the(1.2)supercongruence of Van Hamme[J]. International Journal of Number Theory, 2019, 15(1):29-36. [12] GLAISHER J W L. On the residues of the sums of products of the first p-1 numbers, and their powers, to modulus p2 or p3[J]. Quarterly Journal of Mathematics, 1900, 31:321-353. [13] LEHMER E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson[J]. Ann of Math, 1938, 39(2):350-360. [14] MORLEY F. Note on the congruence 24n≡(-1)n(2n)!/(n!)2, where(2n+1)is a prime[J]. Annals of Mathematics, 1895, 9:168-170. |
[1] | LI Chun-hua, MENG Ling-xiang, FANG Jie-ying. Congruences on type B semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(2): 20-27. |
[2] | WANG Jun-ling, SHAO Yong. Greens relations on a class of semiring which multiplicative reduct is an idempotent semigroup [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 15-22. |
[3] | CUI Qian, GONG Chun-mei, WANG Hui. (~)-Good congruences on Rees matrix semigroups over semiadequate semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 61-66. |
[4] | GONG Chun-mei, ZHANG Jun-mei. (~)-good congruences on regular ortho-u-monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 6-12. |
[5] | WU Dan-dan, GONG Chun-mei. The(~)-good congruences on normal ortho-u-monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 45-53. |
[6] | GONG Chun-mei, FENG Li-xia, REN Xue-ming. (*,~)-good congruences on completely J *,~-simple semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 11-16. |
[7] | LI Chun-hua, XU Bao-gen, HUANG Hua-wei. Unipotent congruences on a proper weakly left type B semigroup [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 49-52. |
[8] | SUN Yi1, SU Gui-fu2. An identity in terms of 2-Motzkin paths and its applications [J]. J4, 2012, 47(6): 90-94. |
[9] | LIU Yi1,2, XU Yang2, QIN Xiao-yan 2, QIN Ya3. TL-filters and TL-congruences of residuated lattices [J]. J4, 2012, 47(2): 98-103. |
[10] | WANG Ling-Yun. Distributive congruences on semirings [J]. J4, 2009, 44(9): 63-65. |
|