JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (5): 93-99.doi: 10.6040/j.issn.1671-9352.0.2023.287

Previous Articles    

Some super congruences involving Catalan numbers

YANG Jizhen1,2, WANG Yunpeng3*   

  1. 1. Department of Mathematics, Shanghai Normal University, Shanghai 200234, China;
    2. Department of Mathematics, Luoyang Normal College, Luoyang 471934, Henan, China;
    3. Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, Henan, China
  • Published:2025-05-19

Abstract: Using the generalized harmonic number and the method of series transformation, some super congruences involving central binomial coefficient, Catalan number and Bernoulli number are established, and some known results are generalized.

Key words: central binomial coefficient, Catalan number, Bernoulli number, congruences

CLC Number: 

  • O157.1
[1] PAN Hao, SUN Zhiwei. A combinatorial identity with application to Catalan numbers[J]. Discrete Mathematics, 2006, 306(16):1921-1940.
[2] SUN Zhiwei, TAURASO R. New congruences for central binomial coefficients[J]. Advances in Applied Mathematics, 2010, 45(1):125-148.
[3] SUN Zhiwei. Super congruences and Euler numbers[J]. Science China Mathematics, 2011, 54(12):2509-2535.
[4] MAO Guoshuai, SUN Zhiwei. New congruences involving products of two binomial coefficients[J]. The Ramanujan Journal, 2019, 49(2):237-256.
[5] MAO Guoshuai. On sums of binomial coefficients involving Catalan and Delannoy numbers modulo p2[J]. The Ramanujan Journal, 2018, 45(2):319-330.
[6] RODRIGUEZ-VILLEGAS F. Hypergeometric families of Calabi-Yau manifolds[C] //Proceedings of the Calabi-Yau Varieties and Mirror Symmetry. Toronto: American Mathematical Society, 2003:223-231.
[7] MORTENSON E. A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function[J]. Journal of Number Theory, 2003, 99(1):139-147.
[8] VAN HAMME L. Some conjectures concerning partial sums of generalized hypergeometric series[J]. Lecture Notes in Pure and Applied Mathematics, 1997, 192:223-236.
[9] SWISHER H. On the supercongruence conjecture of van Hamme[J]. Research in the Mathematical Sciences, 2015, 2(1):1-21.
[10] HE Bing. Some congruences on harmonic numbers and binomial sums[J]. Periodica Mathematica Hungarica: Journal of the Janos Bolyai Mathematical Society, 2017, 74(1):67-72.
[11] GUO Junwei. A q-analogue of the(1.2)supercongruence of Van Hamme[J]. International Journal of Number Theory, 2019, 15(1):29-36.
[12] GLAISHER J W L. On the residues of the sums of products of the first p-1 numbers, and their powers, to modulus p2 or p3[J]. Quarterly Journal of Mathematics, 1900, 31:321-353.
[13] LEHMER E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson[J]. Ann of Math, 1938, 39(2):350-360.
[14] MORLEY F. Note on the congruence 24n≡(-1)n(2n)!/(n!)2, where(2n+1)is a prime[J]. Annals of Mathematics, 1895, 9:168-170.
[1] LI Chun-hua, MENG Ling-xiang, FANG Jie-ying. Congruences on type B semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(2): 20-27.
[2] WANG Jun-ling, SHAO Yong. Greens relations on a class of semiring which multiplicative reduct is an idempotent semigroup [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 15-22.
[3] CUI Qian, GONG Chun-mei, WANG Hui. (~)-Good congruences on Rees matrix semigroups over semiadequate semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 61-66.
[4] GONG Chun-mei, ZHANG Jun-mei. (~)-good congruences on regular ortho-u-monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 6-12.
[5] WU Dan-dan, GONG Chun-mei. The(~)-good congruences on normal ortho-u-monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 45-53.
[6] GONG Chun-mei, FENG Li-xia, REN Xue-ming. (*,~)-good congruences on completely J *,~-simple semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 11-16.
[7] LI Chun-hua, XU Bao-gen, HUANG Hua-wei. Unipotent congruences on a proper weakly left type B semigroup [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 49-52.
[8] SUN Yi1, SU Gui-fu2. An identity in terms of 2-Motzkin paths and its applications [J]. J4, 2012, 47(6): 90-94.
[9] LIU Yi1,2, XU Yang2, QIN Xiao-yan 2, QIN Ya3. TL-filters and TL-congruences of residuated lattices [J]. J4, 2012, 47(2): 98-103.
[10] WANG Ling-Yun. Distributive congruences on semirings [J]. J4, 2009, 44(9): 63-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!