JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (8): 39-43.doi: 10.6040/j.issn.1671-9352.0.2015.428

Previous Articles     Next Articles

Global dimensions of cocycle deformations

YU Xiao-lan   

  1. College of Science, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
  • Received:2015-08-25 Online:2016-08-20 Published:2016-08-08

Abstract: Let H be a commutative Hopf algebra with global dimension d. It is proved that the global dimension of any cocycle deformation of H is at most d. That is, cocycle deformations of commutative Hopf algebras preserve the boundedness of global dimensions.

Key words: Hopf algebra, global dimension, cocycle deformation

CLC Number: 

  • O154
[1] MASUOKA A. Abelian and non-abelian second cohomologies of quantized enveloping algebras[J]. J Algebra, 2007, 320(1):1-47.
[2] IGLESIAS A G, MOMBELLI M. Representations of the category of modules over pointed Hopf algebras over S3 and S4[J]. Pacific J Math, 2010, 252(2):343-378.
[3] GOODEARL K R, ZHANG J J. Homological properties of quantized coordinate rings of semisimple groups[J]. Proceedings of the London Mathematical Society, 2007, 94(5):647-671.
[4] KIRKMAN E, KUZMANOVICH J, ZHANG J J. Gorenstein subrings of invariants under Hopf algebra actions[J]. J Algebra, 2009, 322(10):3640-3669.
[5] LU Diming, WU Quanshui, ZHANG J J. Hopf algebras with rigid dualizing complexes[J]. Israel J Math, 2009, 169(1):89-108.
[6] BICHON J. Hopf-Galois objects and cogroupoids[J]. Revista De La Unión Matemática Argentina, 2014, 55(2):11-69.
[7] BICHON J. Hochschild homology of Hopf algebras and free Yetter-Drinfeld resolutions of the counit[J]. Compositio Mathematica, 2012, 149(4):658-678.
[8] BICHON J. Gerstenhaber-Schack and Hochschild cohomologies of co-Frobenius Hopf algebras[J/OL]. Eprint Arxiv, 2014. arXiv.org> math> arXiv:1411.1942.
[9] CAENEPEEL S, GUÉDÉNON T. Semisimplicity of the categories of Yetter-Drinfeld modules and Long dimodules[J]. Comm Algebra, 2004, 32(4):2767-2781.
[10] ANDRUSKIEWITSCH N, SCHNEIDER H J. A characterization of quantum groups[J]. Journal Für Die Reine Und Angewandte Mathematik, 2002, 2004(577):81-104.
[1] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[2] WANG Wei. Hopf algebra structures on unified products and smash coproducts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 9-13.
[3] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[4] XU Ai-min. On relative homological dimensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 44-48.
[5] FU Xue-rong, YAO Hai-lou. Tilting comodules over triangular matrix coalgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 25-29.
[6] GUO Shuang-jian, LI Yi-zheng. Semisimplicity of the categories of Hom-Yetter-Drinfeld modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 17-23.
[7] JIA Ling, CHEN Xiao-yuan. A duality theorem for a Yetter-Drinfeld Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 98-101.
[8] YOU Mi-man, ZHAO Xiao-fan. Diagonal crossed products over monoidal Hom-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 76-80.
[9] LU Dao-wei, ZHANG Xiao-hui. Ore extensions of G-cograded multiplier Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 52-58.
[10] ZHAO Shi-yin1,2, ZHOU Ke-yuan1. The module algebra structures on M2(k) [J]. J4, 2013, 48(8): 24-29.
[11] WANG Sheng-xiang1,2, GUO Shuang-jian2. Hom-Hopf modules for a class of symmetric categories [J]. J4, 2013, 48(4): 40-45.
[12] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories [J]. J4, 2013, 48(2): 20-22.
[13] CHEN Hua-xi1, ZHANG Xiao-hui2, XU Qing-bing3. The Structure Theorem of weak comodule algebras in
Yetter-Drinfeld module categories
[J]. J4, 2013, 48(12): 14-17.
[14] CHEN Quan-guo, GUO Ji-dong. The Monoidal category of generalized quantum cocommutative coalgebras [J]. J4, 2012, 47(12): 69-71.
[15] . Irreducible representations of D(kS3) and ring structure of its Grothendieck group [J]. J4, 2009, 44(12): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!