JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (4): 72-79.doi: 10.6040/j.issn.1671-9352.0.2018.105

Previous Articles     Next Articles

On homological properties of C-torsionless and C-reflexive modules

LUO Xiao-qiang1, TAN Ling-ling2*, XING Jian-min3   

  1. 1. Department of Mathematics, Sichuan University of Arts and Science, Dazhou 635000, Sichuan, China;
    2. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China;
    3. School of Mathematic and Physics, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
  • Published:2019-04-08

Abstract: The relative notions and homological properties of torsionless and reflexive modules with respect to a semidualizing module are investigated. If C is a 1-dualizing module, then each submodule of a projective module is totally C-reflexive, and then the characterizations of C-torsionless and C-reflexive modules with finite GC-dimension are investigated. Moreover, the relations between the GC-dimension and the left C-orthogonal dimension of a module are studied, and some sufficient conditionson the existence of C-reflexive envelope are given.

Key words: C-torsionless module, C-reflexive module, totally C-reflexive module, semidualizing module, C-reflexive envelope

CLC Number: 

  • O154.2
[1] FOXBY H-B. Gorenstein modules and related modules[J]. Mathematica Scandinavica, 1972, 31:267-284.
[2] VASCONCELOS W V. Divisor theory in module categories[M]. North-Holland: Elsevier, 1974.
[3] GOLOD E S. G-dimension and generalized perfect ideals[J]. Trudy Mat Inst Steklov, 1984, 165:62-66.
[4] 黄兆泳. 同调方程[J]. 数学学报, 2001, 43(3):1-10. HUANG Zhaoyong. Homological equations[J]. Acta Mathematica Sinica, 2001, 43(3):1-10.
[5] HOLM H, JØRGENSEN P. Semidualizing modules and related Gorenstein homological dimension[J]. Journal of Pure and Applied Algebra, 2006, 205(2):423-445.
[6] SALIMI M, TAVASOLI E, MORADIFAR P, et al. Syzygy and torsionless modules with respect to a semidualizing module[J]. Algebras and Representation Theory, 2014, 17:1217-1234.
[7] SALIMI M, TAVASOLI E, YASSEMI S. k-torsionless modules with finite Gorenstein dimension[J]. Czechoslovak Mathematical Journal, 2012, 62(3): 663-672.
[8] SATHER-WAGSTAFF S. Semidualizing modules[M/OL]. [2018-03-01]. https://www.ndsu.edu/pubwed/~ssatherw/DOCS/survey.pdf.
[9] BELSHOFF R. Remarks on reflexive modules, covers, and envelopes[J]. Beitrage Zur Algebra Und Geometrie, 2009, 50:353-362.
[10] HUANG Chonghui, HUANG Zhaoyong. Torsionfree dimension of modules and self-injective dimension of rings[J]. Osaka Journal of Mathematics, 2012, 49(1):21-35.
[11] HUANG Zhaoyong. On a generalization of the Auslander-Bridger transpose[J]. Communications in Algebra, 1999, 27:5791-5812.
[12] HUANG Zhaoyong. ω-k-torsionfree modules and ω-left approximation dimension[J]. Science in China Series A: Mathematics, 2001, 44(2):184-192.
[13] HUANG Zhaoyong. Extension closure of relative syzygy modules[J]. Science in China Series A: Mathematics, 2003, 46(5):611-620.
[14] HUANG Zhaoyong. Extension closure of relative k-torsionfree modules[J]. Communications in Algebra, 2006, 34:3585-3592.
[15] JINNAH M I. Reflexive modules over regular local rings[J]. Archiv der Mathematik, 1975, 26(1):367-371.
[16] MAO Lixin, DING Nanqing. On divisible and torsionfree modules[J]. Communications in Algebra, 2008, 36(2):708-731.
[17] 王芳贵. PVMD与自反模[J].四川师范大学学报(自然科学版), 2005, 28(4):379-385. WANG Fanggui. PVMD and reflexive modules[J]. Journal of Sichuan Normal University(Natural Science), 2005, 28(4):379-385.
[18] WANG Fanggui, TANG Gaohua. Reflexive modules over coherent GCD-domains[J]. Communications in Algebra, 2005, 33(9):3283-3292.
[19] WHITE D. Gorenstein projective dimension with respect to a semidualizing module[J]. Journal of Commutative Algebra, 2010, 2(1):111-137.
[20] TANG Xi. New characterizations of dualizing modules[J]. Communications in Algebra, 2012, 40(3):845-861.
[21] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000.
[22] BRUNS W, HERZOG J. Cohen-Macaulay rings[M]. Cambridge: Cambridge University Press, 1993.
[1] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[2] YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Fang-yuan, MENG Xian-jia, TANG Zhan-yong, FANG Ding-yi, GONG Xiao-qing. Android application protection based on smali code obfuscation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 44 -50 .
[2] LIAO Xiang-wen, ZHANG Ling-ying, WEI Jing-jing, GUI Lin, CHENG Xue-qi, CHEN Guo-long. User influence analysis of social media with temporal characteristics[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 1 -12 .
[3] GU Shen-ming, LU Jin-lu, WU Wei-zhi, ZHUANG Yu-bin. Local optimal granularity selections in generalized multi-scale decision systems[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 1 -8 .
[4] CAO Wei-dong, DAI Tao, YU Jin-biao, WANG Xiao-hong, SHI An-feng. Improvement on the solution of pressure equation based on alternating direction in chemical flooding model[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 88 -94 .
[5] LI Jin-hai, WU Wei-zhi. Granular computing approach for formal concept analysis and its research outlooks[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 1 -12 .
[6] SUN Jian-dong, GU Xiu-sen, LI Yan, XU Wei-ran. Chinese entity relation extraction algorithms based on COAE2016 datasets[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 7 -12 .
[7] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1 -8 .
[8] . Interval algorithm for mixed integer nonlinear two-level programming problems[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 9 -17 .
[9] YAN Yan, HAO Xiao-hong. Differential privacy partitioning algorithm based on adaptive density grids[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 12 -22 .
[10] YE Xiao-ming, CHEN Xing-shu, YANG Li, WANG Wen-xian, ZHU Yi, SHAO Guo-lin, LIANG Gang. Anomaly detection model of host group based on graph-evolution events[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 1 -11 .