JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (4): 91-99.doi: 10.6040/j.issn.1671-9352.0.2018.126

Previous Articles     Next Articles

Complete exponential sum estimates in function fields

LI Jiao, CAO Ya-meng, LI Guo-quan*   

  1. College of Mathematics Science, Tianjin Normal University, Tianjin 300387, China
  • Published:2019-04-08

Abstract: Let Fq be the finite field of q elements whose characteristic is p. Let Fq[t] be the polynomial ring over Fq. Let e(·)denote a certain non-trivial character of the field of formal Laurent series in 1/t over Fq. Let k∈N with k≥2, a,b∈Fq[t] and m=(m1,…,mk)∈(Fq[t])k. Define the complete exponential sumSk(a/b,m)=∑d∈Fq[t], deg d<deg be(a/b∑ki=1mid i).The following result is proved. Suppose that b≠0, gcd(b,a)=1 and gcd(b,m1,…,mk)=1. If p>k, then |Sk(a/b,m)|≤Ck|b|1-1/k, where C2=1 and Ck=(k-1)2(k-1)(2k)/(k-2) when k≥3.

Key words: function field, exponential sum, Weyls differencing

CLC Number: 

  • O156
[1] HUA L K. The additive prime number theory[M]. Beijing: [s.n.] , 1957.
[2] VAUGHAN R C. The Hardy-Littlewood method[M]. Cambridge: Cambridge University Press, 1997.
[3] CHEN J R. On Professor Huas estimate of exponential sums[J]. Sci Sinica, 1977, 20:711-719.
[4] KUBOTA R. Warings problem for Fq[x] [J]. Diss Math, 1974, 117:1-60.
[5] ZHAO X. A note on multiple exponential sums in function fields[J]. Finite Fields and Their Applications, 2012, 18:35-55.
[6] LÊ T H. Problems and results on intersective sets[M] // Combinatorial and additive number theory: CANT 2011 and 2012, New York: Springer, 2014: 115-128.
[7] LÊ T H, LIU Y R. On sets of polynomials whose difference set contains no squares[J]. Acta Arith, 2013, 161:127-143.
[8] LIU Y R, WOOLEY T D. Warings problem in function fields[J]. J Reine Angew Math, 2010, 638:1-67.
[9] WEIL A. On some exponential sums[J]. Proc Nat Acad Sci USA, 1948, 34:47-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YE Xiao-ming, CHEN Xing-shu, YANG Li, WANG Wen-xian, ZHU Yi, SHAO Guo-lin, LIANG Gang. Anomaly detection model of host group based on graph-evolution events[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 1 -11 .
[2] Zhao-xia WU,Jia-qi WANG. Wireless single spectrum secure auction algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 51 -55 .
[3] WAN Peng-fei, GAO Xing-bao. Novel artificial bee colony algorithm based on objective space decomposition for solving multi-objective optimization problems[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 56 -66 .
[4] CAO Wei-dong, DAI Tao, YU Jin-biao, WANG Xiao-hong, SHI An-feng. Improvement on the solution of pressure equation based on alternating direction in chemical flooding model[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 88 -94 .
[5] LI Jin-hai, WU Wei-zhi. Granular computing approach for formal concept analysis and its research outlooks[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 1 -12 .
[6] SUN Jian-dong, GU Xiu-sen, LI Yan, XU Wei-ran. Chinese entity relation extraction algorithms based on COAE2016 datasets[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 7 -12 .
[7] WANG Xin, ZUO Wan-li, ZHU Feng-tong, WANG Ying. Important-node-based community detection algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 67 -77 .
[8] WANG Ai-lan, SONG Wei-tao, ZHAO Xiu-feng. Properties of the expansion factor over quotient ring[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 78 -84 .
[9] KONG Xiang-jun, WANG Pei. Good congruences associated with multiplicative quasi-adequate transversals[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 1 -3 .
[10] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1 -8 .