JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (7): 50-56.doi: 10.6040/j.issn.1671-9352.0.2018.715

Previous Articles     Next Articles

Short-term load forecasting model based on autoencoder and PSOA-CNN

Wen-qing WANG1(),Ao-yang HAN2,Li-tao YU2,Zhi-sheng ZHANG1,*()   

  1. 1. College of Electrical Engineering, Qingdao University, Qingdao 266071, Shandong, China
    2. Qingdao Electric Power Company of State Grid, Qingdao 266002, Shandong, China
  • Received:2018-12-12 Online:2019-07-20 Published:2019-06-27
  • Contact: Zhi-sheng ZHANG E-mail:517660558@qq.com;slnzzs@126.com
  • Supported by:
    国家自然科学基金资助项目(51477078)

Abstract:

A short-term load forecasting model which combines the autoencoder and convolutional neural network optimized by particle swarm optimization is proposed. Firstly, the autoencoder is used to process the relevant variable data, reduce the noise variable of the required data, and improve the prediction efficiency. Then particle swarm optimization is used to optimize the weight and threshold of the convolutional neural network., which can effectively improve the prediction accuracy and prediction speed of the prediction model. By simulating the load data of the actual power grid, it is verified that the proposed model has higher prediction accuracy.

Key words: convolutional neural network, autoencode, particle swarm optimization, short-term load forecasting

CLC Number: 

  • TM715

Fig.1

CNN structure chart"

Fig.2

Prediction flow based on autoencoder and PSOA-CNN"

Fig.3

Forecasting error curve for comparison of two kinds of model"

Table 1

Comparison result of forecasting performance"

模型平均绝对误差/%最大相对误差/%
常规CNN3.9310.12
自编码器与PSOA-CNN结合1.875.95

Table 2

Forecasting errors of 2 models (7 d)"

日期平均绝对误差/%最大相对误差/%
模型1模型2模型1模型2
14.252.0110.486.31
23.931.8710.125.95
33.251.339.254.78
43.161.529.444.14
53.371.198.704.25
63.672.068.896.19
74.312.2910.956.72
平均值3.701.769.695.47
1 王惠中, 周佳, 刘轲. 电力系统短期负荷预测方法研究综述[J]. 电气自动化, 2015, 37 (1): 1- 3.
doi: 10.3969/j.issn.1000-3886.2015.01.001
WANG Huizhong , ZHOU Jia , LIU Ke . Summary of research on the short-term load forecasting method of the electric power system[J]. Electrical Automation, 2015, 37 (1): 1- 3.
doi: 10.3969/j.issn.1000-3886.2015.01.001
2 朱振伟.气象因素对电网负荷特性影响的研究[D].杭州:浙江大学, 2008.
ZHU Zhenwei. Study on the influence of weather factors on power grid load characteristics[D]. Hangzhou: Zhejiang University, 2008.
3 黄芸.基于神经网络的短期电力负荷预测模型研究[D].天津:天津大学, 2011.
HUANG Yun. Research on short-term power load forecasting model based on neural network[D]. Tianjin: Tianjin University, 2011.
4 张前进. 基于支持向量机回归的电力负荷预测研究[J]. 航空计算技术, 2006, 36 (4): 105- 107.
doi: 10.3969/j.issn.1671-654X.2006.04.029
ZHANG Qianjin . Research on electric-power load forecasting based on support vector machine regression technique[J]. Aeronautical Computing Technique, 2006, 36 (4): 105- 107.
doi: 10.3969/j.issn.1671-654X.2006.04.029
5 杨帆, 吴耀武, 熊信银, 等. 用自适应模糊推理系统预测电力短期负荷[J]. 高电压技术, 2007, 33 (4): 129- 133.
doi: 10.3969/j.issn.1003-6520.2007.04.033
YANG Fan , WU Yaowu , XIONG Xinyin , et al. Short-term load forecasting in power system based on adaptive network-based fuzzy inference system[J]. High Voltage Engineering, 2007, 33 (4): 129- 133.
doi: 10.3969/j.issn.1003-6520.2007.04.033
6 邰能灵, 侯志俭. 小波模糊神经网络在电力系统短期负荷预测中的应用[J]. 中国电机工程学报, 2004, 24 (1): 24- 29.
doi: 10.3321/j.issn:0258-8013.2004.01.005
TAI Nengling , HOU Zhijian . New short-term load forecasting principle with the wavelet transform fuzzy neural network for the power systems[J]. Proceedings of the CSEE, 2004, 24 (1): 24- 29.
doi: 10.3321/j.issn:0258-8013.2004.01.005
7 张军阳, 王慧丽, 郭阳, 等. 深度学习相关研究综述[J]. 计算机应用研究, 2018, 35 (7): 1921- 1928, 1936.
doi: 10.3969/j.issn.1001-3695.2018.07.001
ZHANG Junyang , WANG Huili , GUO Yang , et al. Review of deep learning[J]. Application Research of Computers, 2018, 35 (7): 1921- 1928, 1936.
doi: 10.3969/j.issn.1001-3695.2018.07.001
8 HOSEIN S, HOSEIN P. Load forecasting using deep neural networks[C]//Power & Energy Society Innovative Smart Grid Technologies Conference. Washington: IEEE, 2017.
9 MOCANU D C , BOU AMMAR H , LOWET D , et al. Factored four way conditional restricted Boltzmann machines for activity recognition[J]. Pattern Recognition Letters, 2015, 66 (C): 100- 108.
10 陈先昌.基于卷积神经网络的深度学习算法与应用研究[D].杭州:浙江工商大学, 2014.
CHEN Xianchang. Research on algorithm and application of deep learning based on convolutional neural network[D]. Hangzhou: Zhejiang Gongshang University, 2014.
11 程宇也.基于人工神经网络的短期电力负荷预测研究[D].杭州:浙江大学, 2017.
CHENG Yuye. Short-term electricity demand forecasting based on artificial neural network[D]. Hangzhou: Zhejiang University, 2017.
12 牛东晓, 马天男, 王海潮, 等. 基于KPCA和NSGAⅡ优化CNN参数的电动汽车充电站短期负荷预测[J]. 电力建设, 2017, 38 (3): 85- 92.
doi: 10.3969/j.issn.1000-7229.2017.03.012
NIU Dongxiao , MA Tiannan , WANG Haichao , et al. Short-term load forecasting of electric vehicle charging station based on KPCA and CNN parameters optimized by NSGAⅡ[J]. Electric Power Construction, 2017, 38 (3): 85- 92.
doi: 10.3969/j.issn.1000-7229.2017.03.012
13 张贵勇.改进的卷积神经网络在金融预测中的应用研究[D].郑州:郑州大学, 2016.
ZHANG Guiyong. Research on the application of improved convolutional neural network in financial forecasting[D]. Zhengzhou: Zhengzhou University, 2016.
14 李思琴, 林磊, 孙承杰. 基于卷积神经网络的搜索广告点击率预测[J]. 智能计算机与应用, 2015, 31 (5): 22- 25.
doi: 10.3969/j.issn.2095-2163.2015.05.007
LI Siqin , LIN Lei , SUN Chengjie . Search advertisement click through rate prediction based on convolutional neural network[J]. Intelligent Computer and Applications, 2015, 31 (5): 22- 25.
doi: 10.3969/j.issn.2095-2163.2015.05.007
15 何明慧, 徐怡, 王冉, 等. 改进的粒子群算法优化神经网络及应用[J]. 计算机工程与应用, 2018, 54 (19): 107- 113.
doi: 10.3778/j.issn.1002-8331.1706-0206
HE Minghui , XU Yi , WANG Ran , et al. Combination dynamic inertia weight particle swarm optimization algorithm to optimize neural network and application[J]. Computer Engineering and Applications, 2018, 54 (19): 107- 113.
doi: 10.3778/j.issn.1002-8331.1706-0206
16 吴杰康, 陈明华, 陈国通. 基于PSO的模糊神经网络短期负荷预测[J]. 电力系统及其自动化学报, 2007, 19 (1): 63- 67.
doi: 10.3969/j.issn.1003-8930.2007.01.012
WU Jiekang , CHEN Minghua , CHEN Guotong . Fuzzy neural network model based on particle swarm optimization for short-term load forecasting[J]. Proceedings of the CSU-EPSA, 2007, 19 (1): 63- 67.
doi: 10.3969/j.issn.1003-8930.2007.01.012
17 王倩, 张智晟, 王帅, 等. 基于PSO-RNN的光伏发电功率预测研究[J]. 青岛大学学报(工程技术版), 2014, 29 (4): 40- 43.
WANG Qian , ZHANG Zhisheng , WANG Shuai , et al. Study of power forecasting of photovoltaic based on PSO-RNN[J]. Journal of Qingdao University (Engineering & Technology Edition), 2014, 29 (4): 40- 43.
18 金士琛, 薛会, 林霞, 等. 基于FDNN的电力系统短期负荷预测模型研究[J]. 青岛大学学报(工程技术版), 2017, 32 (4): 12- 16.
JIN Shichen , XUE Hui , LIN Xia , et al. Study of short-term load forecasting of power system based on fuzzy deep neural network[J]. Journal of Qingdao University(Engineering & Technology Edition), 2017, 32 (4): 12- 16.
19 邓俊锋, 张晓龙. 基于自动编码器组合的深度学习优化方法[J]. 计算机应用, 2016, 36 (3): 697- 702.
DENG Junfeng , ZHANG Xiaolong . Deep learning algorithm optimization based on combination of auto-encoders[J]. Journal of Computer Applications, 2016, 36 (3): 697- 702.
20 王雅思, 姚鸿勋, 孙晓帅, 等. 深度学习中的自编码器的表达能力研究[J]. 计算机科学, 2015, 42 (9): 56- 60.
WANG Yasi , YAO Hongxun , SUN Xiaoshuai , et al. Representation ability research of auto-encoders in deep learning[J]. Computer Science, 2015, 42 (9): 56- 60.
[1] Zhen-peng LIU,Wen-sheng WANG,Yu-peng HE,Jing-wei SUN,Bin ZHANG. A deployment strategy for fault recovery of SDN control nodes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(5): 21-27.
[2] QIN Jing, LIN Hong-fei, XU Bo. Music retrieval model based on semantic descriptions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(6): 40-48.
[3] MA Lan, LI Wei-an, YIN Tian-yi. Improved particle swarm optimization for flight conflict resolution based on variable neighborhood search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 23-28.
[4] QU Bin-peng, WANG Zhi-hao. A study of adaptive Memetic algorithm based on particle swarm optimization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 118-124.
[5] WAN Zhi-ping1, L Zhi-min1,2 *. A kind of adaptive species optimization of wireless Mesh network QoS routing algorithm [J]. J4, 2013, 48(09): 10-16.
[6] L Jia-liang1,2,3, WANG Ying-long1,3, CUI Huan-qing1, WEI Nuo2,3, GUO Qiang2,3. Study on the node localization schemes of three dimensional wireless sensor networks based on particle swarm optimization [J]. J4, 2013, 48(05): 78-82.
[7] CUI Huan-qing1,2, WANG Ying-long1*, L Jia-liang1,2, WEI Nuo1. Distributed node localization based on the stochastic particle swarm optimization [J]. J4, 2012, 47(9): 51-55.
[8] ZHOU Yan1,2, LIU Pei-yu 1,2, ZHAO Jing1,2, WANG Qian-long1,2. Chaos particle swarm optimization based on the adaptive inertia weight [J]. J4, 2012, 47(3): 27-32.
[9] DING Wei-ping1,2,3, WANG Jian-dong2, DUAN Wei-hua2, SHI Quan1. Research of cooperative PSO for attribute reduction optimization [J]. J4, 2011, 46(5): 97-102.
[10] LI Bin1,2, LI Yi-bin1, RONG Xue-wen1. Intelligent optimization strategy for ELM-RBF neural networks [J]. J4, 2010, 45(5): 48-51.
[11] QI Lu1, YANG Bo1*, WANG Lin2. PSO based grayscale correction for cement paste image gathered by μCT [J]. J4, 2010, 45(11): 16-20.
[12] ZHOU Shu-wang1,2,3, WANG Ying-long1,3, GUO Qiang1,2, WEI Nuo1,2, GUO Wen-juan1,3. A new method for localization based on network  coverage and intelligent search [J]. J4, 2010, 45(11): 27-31.
[13] ZHOU Shu-Wang, WANG Yang-Long, GUO Jiang, WEI Nuo. Particle swarm optimizationbasedwireless sensor  network nodes localization method [J]. J4, 2009, 44(9): 52-55.
[14] TUN Rui-Hai, DONG Ji-Wen, DUAN Qi-Qiang. A scale chaos particle swarm optimization algorithm and the wavelet  in the forecast application of foundation settlement [J]. J4, 2009, 44(11): 75-78.
[15] ZHANG Guo-ying,SHA Yun,JIANG Hui-na . An improved KNN classification algorithm based on particle swarm optimization [J]. J4, 2006, 41(3): 34-36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[2] GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27 -30 .
[3] SHI Kai-quan. P-information law intelligent fusion and soft information #br# image intelligent generation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 1 -17 .
[4] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[5] WANG Bi-yu, CAO Xiao-hong*. The perturbation for the Browder’s theorem of operator matrix#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 90 -95 .
[6] DING Chao1, 2, YUAN Chang-an1, 3, QIN Xiao1, 3. A prediction algorithm for multi-data streams  based on GEP[J]. J4, 2010, 45(7): 50 -54 .
[7] MENG Xiang-bo1, ZHANG Li-dong1, DU Zi-ping2. Investment and reinsurance strategy for insurers under #br# mean-variance criterion with jumps#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 36 -40 .
[8] PENG Zhen-hua, XU Yi-hong*, TU Xiang-qiu. Optimality conditions for weakly efficient elements of nearly preinvex set-valued optimizaton#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 41 -44 .
[9] HU Ming-Di, SHE Yan-Hong, WANG Min. Topological properties of  three-valued   logic  metric space[J]. J4, 2010, 45(6): 86 -90 .
[10] WU Yun1,2, HAN Ya-die1. Existence of nontrivial solutions of nonlinear elliptic equation with critical potential[J]. J4, 2013, 48(4): 91 -94 .