JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (10): 83-87.doi: 10.6040/j.issn.1671-9352.0.2020.083

Previous Articles     Next Articles

Judgement of(ω)property for operators functional calculus

JIANG Hu, CAO Xiao-hong*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Online:2020-10-20 Published:2020-10-07

Abstract: A new spectrum set is defined basing on the semi-Fredholm perturbation theory, and by using this spectrum set, this paper characterizes the(ω)property for the bounded linear operators and their functional calculus.

Key words: (ω) property, spectrum, approximate point spectrum, essential approximate point spectrum

CLC Number: 

  • O177.2
[1] RAKOCEVIC V. On a class of operators[J]. Matematicki Vesnik, 1985, 37(4):423-426.
[2] WEYL H V. Über beschränkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392.
[3] AIENA P, PEDRO P. Variations on Weyls theorem[J]. Journal of Mathematical Analysis and Applications, 2006, 324(1):566-579.
[4] AN I J, HAN Y M. Weyls theorem for algebraically quasi-class A operators[J]. Integral Equations and Operator Theory, 2008, 62(1):1-10.
[5] CAO Xiaohong. Analytically class A operators and Weyls theorem[J]. Journal of Mathematical Analysis and Applications, 2006, 320(2):795-803.
[6] COBURN L A. Weyls theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3):285-288.
[7] AIENA P. Classes of operators satisfying a-Weyls theorem[J]. Studia Mathematica, 2005, 169(2):105-122.
[8] CONWAY J B. A course in functional analysis[M]. Beijing: Beijing World Publishing Corporation, 2003.
[9] KATO T. Perturbation theory for linear operators[M]. New York: Springer-Verlag, 1966.
[10] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1966, 163(1):18-49.
[1] FENG-GAO Hui-zi, CAO Xiao-hong. Judgement of a-Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 88-94.
[2] DAI Lei, HUANG Xiao-jing, GUO Qi. Property(ω1)and the single-valued extension property [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 55-61.
[3] LIU Ying, CAO Xiao-hong. Consistent invertibility and the judgement of Weyls theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 112-117.
[4] An-min ZHOU,Lei HU,Lu-ping LIU,Peng JIA,Liang LIU. Malicious Office document detection technology based on entropy time series [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(5): 1-7.
[5] Zhao-xia WU,Jia-qi WANG. Wireless single spectrum secure auction algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 51-55.
[6] ZHANG Ying, CAO Xiao-hong, DAI Lei. Judgement of Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 82-87.
[7] SONG Jia-jia, CAO Xiao-hong, DAI Lei. The judgement for the small compact perturbation of SVEP for upper triangular operator matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 61-67.
[8] DAI Lei, CAO Xiao-hong. Property(z)and Weyl type theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 60-65.
[9] KONG Ying-ying, CAO Xiao-hong, DAI Lei. Judgement of a-Weyls theorem and its perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 77-83.
[10] WU Xue-li, CAO Xiao-hong, ZHANG Min. The perturbation of the single valued extension property for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 5-9.
[11] YANG Gong-lin, JI Pei-sheng. Some properties of primitive ideal submodules in Hilbert C*-modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 50-55.
[12] CHEN Shi-zhao, CAO Xiao-hong*. Linear maps between operator algebras preserving the ascent and descent [J]. J4, 2013, 48(12): 86-89.
[13] LU Shi-fang1, WEI Liang2, ZHAO Hai-xing2. On signless Laplace integral graphs of complete tripartite graphs [J]. J4, 2012, 47(12): 41-46.
[14] GAO Jie. Structure of eigenvalues of multi-point boundary value problems [J]. J4, 2011, 46(8): 17-22.
[15] ZHANG He-jia, CAO Xiao-hong*. The equivalence of a-Browder theorem and property (ω1) for operational calculus of operators [J]. J4, 2011, 46(4): 108-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27 -30 .
[2] HE Tong,LU Chang-jing,SHI KAi-quan, . Rough graph and its structure[J]. J4, 2006, 41(6): 46 -50 .
[3] LIU Kun-lun. Application of variable structure pair copula model in the analysis of financial contagion[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 104 -110 .
[4] HU Ming-Di, SHE Yan-Hong, WANG Min. Topological properties of  three-valued   logic  metric space[J]. J4, 2010, 45(6): 86 -90 .
[5] . Determination of nutrimental constituents and analysis of function for Japanese red pine pollen and Japanese black pine pollen[J]. J4, 2006, 41(1): 130 -132 .
[6] LIU Feng-qin,XIA Hai-rui,RAN Dong-gang,ZHAO Peng,SAN Shang-qian,LING Zong-cheng,GAO Wen-lan, . The Raman spectra analysis of BaWO4 crystal[J]. J4, 2006, 41(5): 115 -118 .
[7] WANG Bi-yu, CAO Xiao-hong*. The perturbation for the Browder’s theorem of operator matrix#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 90 -95 .
[8] GUO Qiao-jin, DING Yi, LI Ning. A context based method for ROI detection in digitized mammograms[J]. J4, 2010, 45(7): 70 -75 .
[9] ZOU Guo-ping1, MA Ru-ning1, DING Jun-di2, ZHONG Bao-jiang3. Image retrieval based on saliency weighted color and texture[J]. J4, 2010, 45(7): 81 -85 .
[10] LIU Jing-Lei, WANG Ling-Ling, ZHANG Wei. Generation algorithm for the role assigning lattice[J]. J4, 2009, 44(11): 52 -56 .