JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (2): 56-63.doi: 10.6040/j.issn.1671-9352.0.2020.361
Previous Articles Next Articles
SU Xiao-xiao, ZHANG Ya-li
CLC Number:
[1] MA Ruyun, MA Huili. Existence of sign-changing periodic solutions of second order difference equations[J]. Applied Mathematics and Computation, 2008, 203(2):463-470. [2] HE Tieshan, XU Yuantong. Positive solutions for nonlinear discrete second-order boundary value problems with parameter dependence[J]. Journal of Mathematical Analysis and Applications, 2011, 379(2):627-636. [3] BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations[J]. Journal of Difference Equations and Applications, 2006, 12(7):677-695. [4] ATICI F M, GUSEINOV G S. Positive periodic solutions for nonlinear difference equations with periodic coefficients[J]. Journal of Mathematical Analysis and Applications, 1999, 232(1):166-182. [5] ATICI F M, CABADA A. Existence and uniqueness results for discrete second-order periodic boundary value problems[J]. Computers Mathematics with Applications, 2003, 45(6/7/8/9):1417-1427. [6] MA Ruyun, LU Yanqiong, CHEN Tianlan. Existence of one-signed solutions of discrete second-order periodic boundary value problems[J/OL]. Abstract and Applied Analysis, 2012[2020-5-21]. http://dx.doi.org/10.1155/2012/437912. [7] 蒋玲芳. 二阶奇异离散周期边值问题正解的存在性和多解性[J]. 内蒙古大学学报(自然科学版), 2013, 44(4): 345-351. JIANG Lingfang. Existence and multiplicity of positive solution for second order periodic discrete boundary value problem with singularities[J]. Journal of Inner Mongolia University(Natural Science), 2013, 44(4):345-351. [8] LIAO Fangfang. Periodic solutions of second order differential equations with vanishing Greens functions[J/OL]. Electronic Journal of Qualitative Theory of Differential Equations, 2017[2020-05-21]. http://www.math.u-szeged.hu/ejqtde/p5704.pdf. [9] 陈瑞鹏, 李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 山东大学学报(理学版), 2019, 54(8):33-41. CHEN Ruipeng, LI Xiaoya. Positive periodic solutions for second-order singular differential equations with damping terms[J]. Journal of Shandong University(Natural Science), 2019, 54(8):33-41. [10] ZHANG Meirong. Optimal conditions for maximum and antimaximum principles of the periodic solution problem[J/OL]. Boundary Value Problems, 2010[2020-05-21]. https://sci-hub.tw/10.1155/2010/410986. [11] HAKL R, TORRES P J. Maximum and antimaximum principles for a second order differential operator with variable coefficients of indefinite sign[J]. Applied Mathematics and Computation, 2011, 217(19):7599-7093. [12] GRAEF J R, KONG L J, WANG H Y. A periodic boundary value problem with vanishing Greens function[J]. Applied Mathematics Letters, 2008, 21(2):176-180. [13] GRANAS A, DUGUNDJI J. Fixed point theory[M]. New York: Springer-Verlag, 2003: 249-368. |