JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (8): 45-48.doi: 10.6040/j.issn.1671-9352.0.2021.157

Previous Articles    

The property and structure of left Clifford bi-semirings

WEI Meng-jun, LI Gang*   

  1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, Shandong, China
  • Published:2021-08-09

Abstract: The distributive lattice of bi-semirings and band bi-semirings are defined. Using these two definitions and the properties of the left Clifford semigroup, the definitions of the left bi-ring and the left Clifford bi-semiring are given. The necessary and sufficient conditions for a bi-semiring to be a left bi-ring and a bi-semiring to be a left Clifford bi-semiring are obtained.

Key words: band bi-semiring, left bi-ring, left Clifford bi-semiring, distributive lattice congruence

CLC Number: 

  • O152.7
[1] 左孝陵,李为鉴,刘永才. 离散数学[M]. 上海:上海科技出版社, 1982. ZUO Xiaoling, LI Weijian, LIU Yongcai. Discrete mathematics[M]. Shanghai: Shanghai Science & Technical Publishers, 1982.
[2] 张伟. 双半环的结构和同余[D]. 南昌:江西师范大学, 2007. ZHANG Wei. The structure and congruence of bi-semirings[D]. Nanchang: Jiangxi Normal University, 2007.
[3] BANDELT H J, PETRICH M. Subdirect product of rings and distributive lattices[J]. Proc Edinburgh Math, 1982, 25:155-171.
[4] SEN M K, GUO Yuqi, SHUM K P. A class of idempotent semirings[J]. Semigroup Forum, 2000, 60:351-367.
[5] GOLAN J S. The theory of semirings with application in mathematics and theoretical computer science[M]. New York: Pitman Monographs and Surveys in Pure Applied Mathematics, Longman, 1992.
[6] ZHU Pinyu, GUO Yuqi, CEN Jiaping. Structure and characteristics of left Clifford semigroups[J]. Science in China, Ser. A, 1992, 35(7):791-805.
[7] PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: A Wiley-Interscience Publication, 1999.
[1] JIN Jiu-lin, TENG Wen, ZHU Fu-yang, YOU Tai-jie, QU Yun-yun. Maximal subsemigroups of the finite transformation semigroup of weak Y-stabilizer [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 55-62.
[2] ZHANG Qian-tao, LUO Yong-gui, ZHAO Ping. Rank and relative rank of the semigroup PD(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 63-70.
[3] SUN Shuang, LIU Hong-xing. The inclusion graph of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 121-126.
[4] KONG Xiang-jun, WANG Pei. Good congruences associated with multiplicative quasi-adequate transversals [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 1-3.
[5] SHAO Yong. Semilattice-ordered completely regular periodic semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1-5.
[6] WANG Dan, WANG Zheng-pan. Characterizing a band variety in terms of forbidden subsemigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 6-8.
[7] LIANG Xing-liang, WU Su-peng, REN Jun. Characterization of monoids by C(P')acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 9-13.
[8] QIAO Hu-sheng, SHI Xue-qin. On homological classification of weakly torsion free Rees factor S-posets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 49-52.
[9] GONG Chun-mei, FENG Li-xia, REN Xue-ming. (*,~)-good congruences on completely J *,~-simple semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 11-16.
[10] WANG Shou-feng. λ-Semidirect products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 20-23.
[11] QIAO Hu-sheng, ZHAO Ting-ting. On products of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 16-19.
[12] WANG Yong-duo, MA Ya-jun. Simple dual Rickart modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 5-9.
[13] QIAO Hu-sheng, LIAO Min-ying. GP-coherent monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 1-4.
[14] LUO Yong-gui. Maximal(regular)subsemigroups of the semigroup W(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 7-11.
[15] QIAO Hu-sheng, JIN Wen-gang. On monoids over which all weakly injective right S-acts are regular [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 1-3.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!