JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (3): 31-40.doi: 10.6040/j.issn.1671-9352.4.2021.114

Previous Articles    

Research of partition knowledge orthogonal complement for granular space

WANG Bao-li1,2, WANG tao2, LIAN Kan-chao1*, HAN Su-qing2,3   

  1. 1. School of Mathematics &
    Information Technology, Yuncheng University, Yuncheng 044000, Shanxi, China;
    2. Department of Mathematics, Taiyuan Normal University, Jinzhong 030619, Shanxi, China;
    3. Department of Computer Science, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
  • Published:2022-03-15

Abstract: From the algebraic perspective, this study proposes the concepts of the absolute orthogonal complements and the relative orthogonal complements for the starting partition knowledge by analyzing the study characteristic of accurately discerning the objective concept or knowledge. Moreover, we put forward the thoughts of maximal absolute orthogonal complement and minimal relative orthogonal complement to model the most significant difference and the easiest transferring in the absolute and relative cognition of agents.

Key words: partition knowledge, absolute orthogonal complement, relative orthogonal complement, maximal absolute orthogonal complement, minimal relative orthogonal complement

CLC Number: 

  • TP391
[1] YAO Yiyu. A triarchic theory of granular computing[J]. Granular Computing, 2016, 1(2):145-157.
[2] 梁吉业,钱宇华,李德玉,等.大数据挖掘的粒计算理论与方法[J]. 中国科学: 信息科学, 2015, 45(11):1355-1369. LIANG Jiye, QIAN Yuhua, LI Deyu, et al. Theory and method of granular computing for big data mining[J]. Science in China: Series F: Information Sciences, 2015, 45(11):1355-1369.
[3] 王国胤,张清华,马希骜,等. 知识不确定性问题的粒计算模型[J]. 软件学报, 2011, 22(4):676-694. WANG Guoyin, ZHANG Qinghua, MA Xiao, et al. Granular computing models for knowledge uncertainty[J]. Journal of Software, 2011, 22(4):676-694.
[4] YAO Jingtao, VASILAKOS Athanasios V, PEDRYCZ Witold. Granular computing: perspectives and challenges[J]. IEEE Transactions on Cybernetics, 2013, 43:1977-1989.
[5] 苗夺谦,徐菲菲,姚一豫,等. 粒计算的集合论描述[J]. 计算机学报, 2012, 35(2):351-363. MIAO Duoqian, XU Feifei, YAO Yiyu, et al. Set-theoretic formulation of granular computing[J]. Chinese Journal of Computers, 2012, 35(2):351-363.
[6] 徐怡,姚一豫. 划分序乘积空间:基于划分的粒计算模型[J]. 计算机研究与发展, 2019, 56(4):836-843. XU Yi, YAO Yiyu. Partition order product space: partition based granular computing model[J]. Journal of Computer Research and Development, 2019, 56(4):836-843.
[7] YAO Yiyu. A partition model of granular computing[M] //Transactions on Rough Sets I. Berlin: Springer, 2004, 232-253.
[8] YAO Yiyu, ZHANG Nan, MIAO Duoqian, et al. Set-theoretic approaches to granular computing[J]. Fundamenta Informaticae, 2012,115(2/3):247-264.
[9] WU Weizhi, LEUNG Yee. Theory and applications of granular labelled partitions in multi-scale decision tables[J]. Information Sciences, 2011, 181(18):3878-3897.
[10] 苗夺谦,范世栋. 知识的粒度计算及其应用[J]. 系统工程理论及实践, 2002, 22(1):48-56. MIAO Duoqian, FAN Shidong. The calculation of knowledge granulation and its application[J]. Systems Engineering-Theory & Practice, 2002, 22(1):48-56.
[11] LIANG Jiye, QIAN Yuhua. Information granules and entropy in information systems[J]. Science in China: Series F: Information Sciences, 2008, 51(10), 1427-1444.
[12] QIAN Yuhua, LIANG Jiye, WU Weizhi, et al. Information granularity in fuzzy binary GrC model[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(2):253-264.
[13] 黄国顺,曾凡智,陈广义,等. 基于严凸函数的知识粒度与相对粒度[J]. 模式识别与人工智能, 2013, 26(10):897-909. HUANG Guoshun, ZENG Fanzhi, CHEN Guangyi, et al. Knowledge granularity and relative granularity based on strictly convex function[J]. Pattern Recognition and Artificial Intelligence, 2013, 26(10):897-909.
[14] YAO Yiyu, ZHAO Liquan. A measurement theory view on the granularity of partitions[J]. Information Sciences, 2012, 213:1-13.
[15] 王国胤,张清华. 不同知识粒度下粗糙集的不确定性研究[J]. 计算机学报, 2008, 31(9):1588-1598. WANG Guoying, ZHANG Qinghua. Uncertainty of rough sets in different knowledge graularities[J]. Chinese Journal of Computers, 2008, 31(9):1588-1598.
[16] YAO M X. Granularity measures and complexity measures of partition-based granular structures[J]. Knowledge-Based Systems, 2019, 163(1):885-897.
[17] 王宝丽,梁吉业. 信息系统中的知识距离与知识粗糙熵[J]. 计算机科学, 2007, 34(3):151-154 WANG Baoli, LIANG Jiye. Knowledge distance and rough entropy in information systems[J]. Computer Science, 2007, 34(3):151-154.
[18] QIAN Yuhua, LI Yebin, LIANG Jiye, et al. Fuzzy granular structure distance[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(6):2245-2259.
[19] QIAN Yuhua, CHENG Honghong, WANG Jieting, et al. Grouping granular structures in human granulation intelligence[J]. Information Sciences, 2017, 382:150-169.
[20] YANG Jie, WANG Guoyin, ZHANG Qinghua, et al. Knowledge distance measure in multigranulation spaces of fuzzy equivalence relations[J]. Information Sciences, 2018, 448:18-35.
[21] YANG Jie, WANG Guoyin, ZHANG Qinghua, et al. Knowledge distance measure for the multigranularity approximations of a fuzzy concept[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(4):706-717.
[22] 王宝丽,姚一豫. 信息表中的约简补集对及其一般定义[J]. 南京大学学报(自然科学), 2020, 56(4):461-468. WANG Baoli, YAO Yiyu. A definition of comple-mentary attribute reduction pairs in an information table[J]. Journal of Nanjing University(Natural Science), 2020, 56(4):461-468.
[23] 李金海,闫梦宇,徐伟华,等. 概念认知学习的若干问题与思考[J]. 西北大学学报(自然科学版), 2020, 4:501-515. LI Jinhai, YAN Mengyu, XU Weihua, et al. Some problems and thoughts on concept-cognitive learning[J]. Journal of Northwest University(Natural Science Edition), 2020, 50(4):501-515.
[24] WANG Changzhong, HUANG Yang, DING Weiping, et al. Attribute reduction with fuzzy rough self-information measures[J]. Information Sciences, 2021, 549:68-86.
[25] ZHANG Xianyong, YAO Hong, LV Zhiying, et al. Class-specific information measures and attribute reducts for hierarchy and systematicness[J]. Information Sciences, 2021, 563:196-225.
[1] San-li YI,Jian-ting CHEN,Jian-feng HE. ASR-UNet: an improved retinal vessels segmentation algorithm based on attention mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 13-20.
[2] Jing-hong WANG,Li-na LIANG,Hao-kang LI,Yi ZHOU. Community discovery algorithm based on attention network feature [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 1-12,20.
[3] WANG Wei-yu, SHI Cun-hui, YU Xiao-ming, LIU Yue, CHENG Xue-qi. An extractive topic brief representation generation method to event [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 66-75.
[4] Yi-ming ZHANG,Guo-yin WANG,Jun HU,Shun FU. Overlapping community detection based on density peaks and network embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 91-102.
[5] Kan XU,Rui-xin LIU,Hong-fei LIN,Hai-feng LIU,Jiao-jiao FENG,Jia-ping LI,Yuan LIN,Bo XU. Academic paper recommendation based on heterogeneous network embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(11): 35-45.
[6] ZHANG Ling, REN Xue-fang. Intelligent data classification and intelligent retrieval-recognition of class [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 7-14.
[7] Ming-xing LIN. Low-light image enhancement algorithm based on variational structure [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 72-80.
[8] Jia-qi WANG,Mu-yun YANG,Tie-jun ZHAO,Zhen-yu ZHAO. Construction of retrieval dataset of procuratorate legal documents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 81-87.
[9] Ying YU,Xin-nian WU,Le-wei WANG,Ying-long ZHANG. A multi-label three-way classification algorithm based on label correlation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 81-88.
[10] Liu-ying WEN,Wei YUAN. Clustering method for multi-label symbolic value partition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 58-69.
[11] Min-qing ZHANG,Neng ZHOU,Meng-meng LIU,Han WANG,Yan KE. Reversible data hiding in homomorphic encrypted domain based on Paillier [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 1-8,18.
[12] Xin-le WANG,Wen-feng YANG,Hua-ming LIAO,Yong-qing WANG,Yue LIU,Xiao-ming YU,Xue-qi CHENG. Topic tag popularity prediction based on multi-dimensional features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 94-101.
[13] Ni LI,Huan-mei GUAN,Piao YANG,Wen-yong DONG. BERT-IDCNN-CRF for named entity recognition in Chinese [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 102-109.
[14] YANG Ya-ru, WANG Yong-qing, ZHANG Zhi-bin, LIU Yue, CHENG Xue-qi. Social network user identity linkage model based on comprehensive information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 105-113.
[15] ZHANG Di, ZHA Dong-dong, LIU Hua-yong. Construction of the cubic λμ-α-DP curve with two kinds of shape parameters [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 114-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!