JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (11): 116-126.doi: 10.6040/j.issn.1671-9352.0.2022.488
• • Previous Articles Next Articles
Chengcheng ZHONG1(),Heng ZHOU2,*(),Zitong ZHANG3,Chunlei ZHANG4
CLC Number:
1 | 易三莉, 陈建亭, 贺建峰. ASR-UNet: 一种基于注意力机制改进的视网膜血管分割算法[J]. 山东大学学报(理学版), 2021, 56 (9): 13- 20. |
YI Sanli , CHEN Jianting , HE Jianfeng . ASR-UNet: an improved retinal vessels segmentation algorithm based on attention mechanism[J]. Journal of Shandong University(Natural Science), 2021, 56 (9): 13- 20. | |
2 | 郭文鹃, 杨公平, 董晋利. 指纹图像分割方法综述[J]. 山东大学学报(理学版), 2010, 45 (7): 94- 101. |
GUO Wenjuan , YANG Gongping , DONG Jinli . A review of fingerprint image segmentation methods[J]. Journal of Shandong University(Natural Science), 2010, 45 (7): 94- 101. | |
3 | 杨鹏, 蔡青青, 孙昊, 等. 基于卷积神经网络的室内场景识别[J]. 郑州大学学报(理学版), 2018, 50 (3): 73- 77. |
YANG Peng , CAI Qingqing , SUN Hao , et al. Indoor scene recognition based on convolutional neural network[J]. Journal of Zhengzhou University(Natural Science Edition), 2018, 50 (3): 73- 77. | |
4 | 杜中强, 唐林波, 韩煜祺. 面向嵌入式平台的车道线检测方法[J]. 红外与激光工程, 2022, 51 (7): 483- 490. |
DU Zhongqiang , TANG Linbo , HAN Yuqi . Lane line detection method for embedded platform[J]. Infrared and Laser Engineering, 2022, 51 (7): 483- 490. | |
5 | MINAEE S , BOYKOV Y , PORIKLI F , et al. Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (7): 3523- 3542. |
6 | 高兴波, 史旭华, 葛群峰, 等. 面向动态物体场景的视觉SLAM综述[J]. 机器人, 2021, 43 (6): 733- 750. |
GAO Xingbo , SHI Xuhua , GE Qunfeng , et al. A survey of visual SLAM for scenes with dynamic objects[J]. Robot, 2021, 43 (6): 733- 750. | |
7 | CHEN Chen , QIN Chen , QIU Huaqi , et al. Deep learning for cardiac image segmentation: a review[J]. Frontiers in Cardiovascular Medicine, 2020, 7, 25. |
8 | MAGADZA T , VIRIRI S . Deep learning for brain tumor segmentation: a survey of state-of-the-art[J]. Journal of Imaging, 2021, 7 (2): 19. |
9 | LONG J , SHELHAMER E , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39 (4): 640- 651. |
10 | WANG C L, YANG B, LIAO Y W. Unsupervised image segmentation using convolutional autoencoder with total variation regularization as preprocessing[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, LA, USA: IEEE, 2017: 1877-1881. |
11 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015. Berlin: Springer, 2015: 234-241. |
12 | ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[M]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Berlin: Springer, 2018: 3-11. |
13 | BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495. |
14 | ZHAO Pengyu, ZHANG Yuanxing, BIAN Kaigui, et al. Laddernet: knowledge transfer based viewpoint prediction in 360° video[C]//Proc of IEEE ICASSP. Brighton, UK: IEEE, 2019: 1657-1661. |
15 | WU H K, ZHANG J G, HUANG K Q, et al. FastFCN: rethinking dilated convolution in the backbone for semantic segmentation[EB/OL]. (2019-03-28)[2023-10-13]. https://arxiv.org/abs/1903.11816 |
16 | MANINIS K K , PONT-TUSET J , ARBELAEZ P , et al. Convolutional oriented boundaries: from image segmentation to high-level tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 819- 833. |
17 | XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[EB/OL]. (2021-10-28)[2023-10-13]. https://arxiv.org/abs/2105.15203 |
18 | HINTON G E, KRIZHEVSKY A, WANG S D. Transforming auto-encoders[M]//Lecture Notes in Computer Science. Berlin. Heidelberg: Springer, 2011: 44-51. |
19 | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 3859-3869. |
20 | HINTON G E, SABOUR S, FROSST N. Matrix capsules with EM routing[C]//Proc of the 6th International Conference on Learning Representations, [s. n. ]: Open Review, 2018. |
21 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE, 2017: 2261-2269. |
22 | SAHU S K, KUMAR P, SINGH A P. Dynamic routing using inter capsule routing protocol between capsules[C]//2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim). Cambridge, UK: IEEE, 2018: 1-5. |
23 | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2022: 9992-10002. |
24 | XIAO T T, LIU Y C, ZHOU B L, et al. Unified perceptual parsing for scene understanding[M]//Computer Vision-ECCV 2018. Berlin: Springer International Publishing, 2018: 432-448. |
25 | ZHOU Y Q, YU H C, SHI H. Study group learning: improving retinal vessel segmentation trained with noisy labels[M]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021. Cham: Springer, 2021: 57-67. |
26 | CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. (2021-02-08)[2023-10-13]. https://arxiv.org/abs/2102.04306 |
27 | CHEN Y L, LI X W, YAO H T, et al. Adherent nuclei edge detection based on caps-unet[C]//2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Exeter, UK: IEEE, 2021: 889-894. |
[1] | Cheng LI,Wengang CHE,Shengxiang GAO. A object detection algorithm for aerial images [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 59-70. |
[2] | San-li YI,Jian-ting CHEN,Jian-feng HE. ASR-UNet: an improved retinal vessels segmentation algorithm based on attention mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 13-20. |
[3] | Fei-fei XU,Yun-jie XU. Research on matching resumes and positions based on Arc-LSTM [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 83-90. |
[4] | Chang-ying HAO,Yan-yan LAN,Hai-nan ZHANG,Jia-feng GUO,Jun XU,Liang PANG,Xue-qi CHENG. Dialogue generation model based on extended keywords information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(7): 68-76. |
[5] | LIU Biao, LU Zhe, HUANG Yu-wei, JIAO Meng, LI Quan-qi, XUE Rui. Comparative study on neural network structures in power analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 60-66. |
[6] | PANG Bo, LIU Yuan-chao. Fusion of pointwise and deep learning methods for passage ranking [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 30-35. |
[7] | LIU Ming-ming, ZHANG Min-qing, LIU Jia, GAO Pei-xian. Steganalysis method based on shallow convolution neural network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 63-70. |
[8] | LIU Ming, ZAN Hong-ying, YUAN Hui-bin. Key sentiment sentence prediction using SVM and RNN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 68-73. |
|