您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (12): 102-105.doi: 10.6040/j.issn.1671-9352.0.2014.570

• 论文 • 上一篇    下一篇

自守L-函数系数在不同稀疏整数序列中的Ω结果

魏洪彬   

  1. 山东师范大学数学科学学院, 山东 济南 250014
  • 收稿日期:2014-12-22 修回日期:2015-04-14 出版日期:2015-12-20 发布日期:2015-12-23
  • 作者简介:魏洪彬(1987-),男,硕士研究生,研究方向为解析数论.E-mail:weihongbin619@163.com
  • 基金资助:
    国家自然科学基金资助项目(611101249)

The Omega result of coefficients of automorphic L-functions over different sparse sequences

WEI Hong-bin   

  1. School of Mathematical Sciences, Shandong Normal University, Jinan 250014, Shandong, China
  • Received:2014-12-22 Revised:2015-04-14 Online:2015-12-20 Published:2015-12-23

摘要: k是一偶数,我们用H*H 表示定义在Γ=SL2(Z)上的权为k的所有标准化了的Hecke本原特征尖形式的集合。对fH*k,其在尖点∞处的傅立叶展式f(z)=λf(n)n(k-1)/2e2πinz。其中λf(n)是标准化的Hecke算子Tn对应的特征值。我们关注求和函数λf(nif(nj),并确定它的渐近公式余项的 Ω结果,即
E1,2(f,x)=λf(nif(nj)-cj-1x, i=1, j=2,3,
其中c1,c2是合适的常数,得到了如下结果:
E1,2(f,x)=Ω(x5/12),E1,3(f,x)=Ω(x7/16)。

关键词: 自守L-函数, Omega定理, Dirichlet级数

Abstract: Let k be a positive even integer, and H*k be the set of all normalized Hecke primitive eigencuspforms of weight k for Γ=SL2(Z). The Fourier expansion of fH*k at the cusp ∞ is defined by f(z)=λf(n)n(k-1)/2e2πinz, where λf(n) is the eigenvalue of the (normalized) Hecke operator Tn. The Omega result for the summatory function λf(nif(nj) is investigated. Set
E1,2(f,x)=λf(nif(nj)-cj-1x, i=1, j=2,3,
where c1, c2 is a suitable constant. Then it is proved that
E1,2(f,x)=Ω(x5/12),E1,3(f,x)=Ω(x7/16).

Key words: Omega theorem, Dirichlet series, automorphic L-functions

中图分类号: 

  • O156.4
[1] LAO Huixue. The cancellation of Fourier coefficient of cusp forms over different saparse sequences[J]. Acta Math Sin: Engl Ser, 2013, 29:1963-1972.
[2] LAO Huixue, SANKARANARAYANAN A. The average behaviour of Fourier coefficients of cusp forms over sparse sequences[J]. Proc Amer Math Soc, 2009,137:2557-2565.
[3] LAU Y-K, LV Guangshi, WU Jie, Integral power sums of Hecke eigenvalues[J]. Acta Arithmetica, 2011, 150(2):193-207.
[4] LAU Y-K, LV Guangshi. Sums of Fourier coefficients cusp forms[J]. Quart J Math Oxford, 2011, 62:687-716.
[5] KVHLEITNER M, NOWAK W G. An omega theorem for a class of arithmetic functions[J]. Math Nachr, 1994, 165:79-98.
[6] MUKHOPADHYAY A, SRINIVAS K. A zero density estimate for the Selberg class[J]. Int J Number Theory, 2007(3):263-273.
[1] 吴世玕. 右半平面上Dirichlet级数的p-级准确型[J]. 山东大学学报(理学版), 2016, 51(2): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!