山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (12): 102-105.doi: 10.6040/j.issn.1671-9352.0.2014.570
魏洪彬
WEI Hong-bin
摘要: 设k是一偶数,我们用H*H 表示定义在Γ=SL2(Z)上的权为k的所有标准化了的Hecke本原特征尖形式的集合。对f∈H*k,其在尖点∞处的傅立叶展式f(z)=λf(n)n(k-1)/2e2πinz。其中λf(n)是标准化的Hecke算子Tn对应的特征值。我们关注求和函数λf(ni)λf(nj),并确定它的渐近公式余项的 Ω结果,即
E1,2(f,x)=λf(ni)λf(nj)-cj-1x, i=1, j=2,3,
其中c1,c2是合适的常数,得到了如下结果:
E1,2(f,x)=Ω(x5/12),E1,3(f,x)=Ω(x7/16)。
中图分类号:
[1] LAO Huixue. The cancellation of Fourier coefficient of cusp forms over different saparse sequences[J]. Acta Math Sin: Engl Ser, 2013, 29:1963-1972. [2] LAO Huixue, SANKARANARAYANAN A. The average behaviour of Fourier coefficients of cusp forms over sparse sequences[J]. Proc Amer Math Soc, 2009,137:2557-2565. [3] LAU Y-K, LV Guangshi, WU Jie, Integral power sums of Hecke eigenvalues[J]. Acta Arithmetica, 2011, 150(2):193-207. [4] LAU Y-K, LV Guangshi. Sums of Fourier coefficients cusp forms[J]. Quart J Math Oxford, 2011, 62:687-716. [5] KVHLEITNER M, NOWAK W G. An omega theorem for a class of arithmetic functions[J]. Math Nachr, 1994, 165:79-98. [6] MUKHOPADHYAY A, SRINIVAS K. A zero density estimate for the Selberg class[J]. Int J Number Theory, 2007(3):263-273. |
[1] | 吴世玕. 右半平面上Dirichlet级数的p-级准确型[J]. 山东大学学报(理学版), 2016, 51(2): 58-63. |
|