山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 112-117.doi: 10.6040/j.issn.1671-9352.0.2015.430
卢涛1,王习娟2*,贺伟3
LU Tao1, WANG Xi-juan2*, HE Wei3
摘要: 基于topos中的偏序对象, 讨论了topos中的上下确界的定义, 推广了格论中的经典结论, 将一些格论中熟知的结论提升到了topos中。 得到了主要结果:topos中的对象为完备偏序对象当且仅当该对象的任意广义子集存在上(下)确界。
中图分类号:
[1] JOHNSTONE P T. Sketches of an elephant: a topos theory compendium[M]. Oxford: Oxford University Press, 2002. [2] MAC LANE S, MOERDIJK L. Sheaves in geometry and logic: a first introduction to topos[M]. New York: Springer-Verlag, 1992. [3] MAC LANE S. Categories for working mathematician[M]. New York: Springer-Verlag, 1972. [4] 贺伟. 范畴论[M]. 北京: 科学出版社, 2006. HE Wei. Category theory[M]. Beijing: Science Press, 2006. [5] JOHNSTONE P T, JOYAL A. Continuous categories and exponentiable toposes[J]. Journal of Pure and Applied Algebra, 1982, 25:255-296. [6] KOCK A, LECOUTURIER P, MIKKELSEN C J. Some topos theoretic concepts of finiteness[J]. Lecture Notes in Math. Berlin: Springer-Verlag, 1975, 445:209-283. [7] 孟晓青. Topos理论简介[J]. 数学进展, 1992, 21(1):1-24. MENG Xiaoqing. An introduction to topos theory[J]. Advances in Mathematics, 1992, 21(1):1-24. [8] LUO Maokang, HE Wei. A new logic for uncertainty[J]. 2015, http://arxiv.org/abs/1506.03123. [9] HE Wei, LUO Maokang. Quantum spaces[J]. Acta Mathematica Sinica, English Series, 2010, 26(7):1323-1330. [10] 卢涛, 贺伟, 王习娟. Galois connections in a topos[J]. 数学研究与评论, 2010, 30(3):381-389. LU Tao, HE Wei, WANG Xi Juan. Galois connections in a topos[J]. Journal of Mathematical Research and Exposition, 2010, 30(3):381-389. [11] 王习娟, 贺伟. On the heyting algebra objects in a topos[J]. Journal of Mathematics, 2011, 31(6):979-998. WANG Xijuan, HE Wei. On the heyting algebra objects in a topos[J]. 数学杂志, 2011, 31(6):979-998. [12] 卢涛,王习娟,贺伟.Topos中的完备偏序对象上的算子理论[J].山东大学学报(理学版),2016,51(2):64-71. LU Tao, WANG Xijuan, HE Wei. The operator theory on complete partially ordered objects in a topos[J]. Journal of Shandong University(Natural Science), 2016, 51(2):64-71. |
[1] | 卢涛,王习娟,贺伟. Topos中完备偏序对象上的算子理论[J]. 山东大学学报(理学版), 2016, 51(2): 64-71. |
[2] | 卢涛, 王习娟, 贺伟. Topos中选择公理的一个等价刻画[J]. 山东大学学报(理学版), 2015, 50(12): 54-57. |
|