《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (4): 86-90.doi: 10.6040/j.issn.1671-9352.0.2017.652
张伟伟*,蔡建生
ZHANG Wei-wei*, CAI Jian-sheng
摘要: 设图G具有n个顶点, 图的K4-因子是由n/4个顶点互不相交的K4构成的图G的子图(其中 4 整除 n)。 我们试图寻找尽可能小的概率使得随机图G几乎必然包含K4-因子。应用概率方法,给出当概率p=O(n-0.44)时, 随机图G(n,p)几乎必然包含K4-因子。
中图分类号:
[1] ERDOS P, RENYI A. On the existence of a factor of degree one in a connected random graph[J]. Acta Math Acad Sci. Hungar. 1996, 17: 359-368. [2] KRIVELEVICH M. Triangle factors in random graphs[J]. Combinatorics, Probability and Computing, 1997, 6:337-347. [3] AION N, YUSTER R. Threshold functions for H-factors[J]. Combinatorics, Probability and Computing, 1993, 2:137-144. [4] RUCINSKI A. Matching and covering the vertices of a random graph by copies of a given graph[J]. Discrete Math, 1992, 106:185-197. [5] AION N, SPENCER J H. The probabilistic method[M]. New York: Wiley, 1992: 303-335. [6] JANSON S, LUCZAK T, RUCINSKI A. An exponential bound for the probability of nonexistence of a specified subgraph in a random graph[J]. Random Graphs, 1990, 87:73-87. [7] 蔡建生, 闫桂英. 随机图中[k, k+1] -因子的存在性[J]. 应用数学学报, 2017, 40(1):144-148. CAI Jiansheng, YAN Guiying. On the existence of[k, k+1] -factors in random graphs[J]. Acta Mathematicae Applicatae Sinica, 2017, 40(1):144-148. [8] CAI J S, WANG X Y, YAN G Y. A note on the existence of fractional f-factors in random graphs[J]. Acta Mathematicae Applicatae Sinica, English Series, 2014, 30(3):677-680. [9] YAN Y Z, WANG H X, WANG J, et al. H(n)-factors in random graphs[J]. Statistics & Probability Letters, 2008, 78(11):1255-1258. |
[1] | 刘信生,魏自盈. 图的邻点可区别星边色数的一个上界[J]. J4, 2012, 47(2): 52-55. |
[2] | 刘信生 朱志强. 图的点可区别IE-全色数的一个上界[J]. J4, 2009, 44(10): 14-16. |
|