《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 118-126.doi: 10.6040/j.issn.1671-9352.0.2018.146
• • 上一篇
李娟
LI Juan
摘要: 晶体相场模型是一类空间六阶非线性发展方程。首先,给出了线性化Crank-Nicolson格式,该格式在第一、二时间层是显式差分格式,其余时间层是线性化隐式差分格式。在建立差分格式的过程中,将非线性项(u3)xx改写成(3u2 ux)x,利用中心差商对其进行离散。其次,证明了差分格式解的先验估计式及无条件收敛性,收敛阶在时空方向均为二阶。最后通过数值算例,验证差分格式是有效的。
中图分类号:
[1] ELDER K R, KATAKOWSKI M, HAATAJA M, et al. Modeling elasticity in crystal growth[J]. Phys Rev Lett, 2002, 88(24):245701. [2] ELDER K R, GRANT M. Modeling elastic and plastic deformations in nonequilbrium processing using phase field crystals[J]. Phys Rev E, 2004, 70(1):051605. [3] WISE S M, WANG Cheng, LOWENGRUB J S. An energy-stable and convergent finite-difference scheme for the phase field crystal equation[J]. SIAM J Numer Anal, 2009,47(3):2269-2288. [4] ] HU Zhengzheng, WISE S M, WANG Cheng, et al. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation[J]. J Comput Phys, 2009, 228(15):5323-5339. [5] GOMEZ H, NOGUEIRA X. An unconditionally energy-stable method for the phase field crystal equation[J]. Comput Methods Appl Mech Engrg, 2012, 249/250/251/252:52-61. [6] ZHANG Zhengru, MA Yuan, QIAO Zhonghua. An adaptive time-stepping strategy for solving the phase field crystal model[J]. J Comput Phys, 2013, 249:204-215. [7] SHIN J, LEE H G, LEE J Y. First and second order numerical methods based on a new convex splitting for phase-field crystal equation[J]. J Comput Phys, 2016, 327:519-542. [8] CAO Haiyan, SUN Zhizhong. Two finite difference schemes for the phase field crystal equation[J]. Sci China Math, 2015, 58(11):2435-2454. [9] YANG Xiaofeng, HAN Daozhi. Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal model[J]. J Comput Phys, 2017, 330:1116-1134. [10] 李娟. 粘性Cahn-Hilliard方程的半线性Crank-Nicolson格式[J]. 四川师范大学学报(自然科学版), 2018, 41(2):237-245. LI Juan. On a semi-linearized Crank-Nicolson scheme for the viscous Cahn-Hilliard Equation[J]. Journal of Sichuan Normal University(Natural Science), 2018, 41(2):237-245. [11] 孙志忠. 偏微分方程数值解法[M]. 2版. 北京: 科学出版社, 2012: 13-16. SUN Zhizhong. The method to numerical solutions of partial differential equations[M]. 2nd ed. Beijing: Science Press, 2012: 13-16. [12] LI Juan, SUN Zhizhong, ZHAO Xuan. A three level linearized compact difference scheme for the Cahn-Hilliard equation[J]. Sci China Math, 2012, 55(4):805-826. [13] STEFANOVIC P, HAATAJA M, PROVATAS N. Phase-field crystals with elastic interactions[J]. Phys Rev Lett, 2006, 96(22):1-4. [14] STEFANOVIC P, HAATAJA M, PROVATAS N. Phase field crystal study of deformation and plasticity in nanocrystalline materials[J]. Phys Rev E, 2009, 80:046107. [15] WANG Cheng, WISE S M. An energy stable and convergent finite-difference scheme for the modified phase field crystal equation[J]. SIAM J Numer Anal, 2011, 49(3):945-969. [16] BASKARAN A, HU Zhengzheng, LOWENGRUB J S, et al. Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation[J]. J Comput Phys, 2013, 250:270-292. [17] GALENKO P K, GOMEZ H, KROPOTIN N V, et al. Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation[J]. Phys Rev E, 2013, 88:013310. [18] BASKARAN A, LOWENGRUB J S, WANG Cheng, et al. Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation[J]. SIAM J Numer Anal, 2013, 51(5):2851-2873. [19] DEHGHAN M, MOHAMMADI V. The numerical simulation of the phase field crystal(PFC)and modified phase field crystal(MPFC)models via global and local meshless methods[J]. Comput Methods Appl Mech Engrg, 2016, 298:453-484. [20] LEE H G, SHIN J, LEE J Y. First-and second-order energy stable methods for the modified phase field crystal equation[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 321:1-17. |
[1] | 张泰年,李照兴. 一类退化抛物型方程反问题的收敛性分析[J]. 山东大学学报(理学版), 2017, 52(8): 35-42. |
[2] | 郑秀云,史加荣. Armijo型线搜索下的全局收敛共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(1): 98-101. |
[3] | 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16-23. |
[4] | 张玉,肖犇琼,许可,沈爱婷. NSD随机变量阵列的完全矩收敛性[J]. 山东大学学报(理学版), 2016, 51(6): 30-36. |
[5] | 张立君,郭明乐. 行为渐近负相协随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2016, 51(2): 42-49. |
[6] | 徐言超. 连续时间正系统的静态输出反馈鲁棒H∞控制[J]. 山东大学学报(理学版), 2016, 51(12): 87-94. |
[7] | 谭闯, 郭明乐, 祝东进. 行为ND随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 27-32. |
[8] | 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19. |
[9] | 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74. |
[10] | 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13. |
[11] | 马维元,张海东,邵亚斌. 非线性变阶分数阶扩散方程的全隐差分格式[J]. J4, 2013, 48(2): 93-97. |
[12] | 王开荣,王书敏. 具有充分下降性的修正型混合共轭梯度法[J]. J4, 2013, 48(09): 78-84. |
[13] | 张红玉,崔明荣*. 两类分数阶对流-扩散方程的有限差分方法[J]. J4, 2012, 47(6): 40-48. |
[14] | 冯琳1,2,段复建1,和文龙1. 基于简单二次函数模型的滤子非单调信赖域算法[J]. J4, 2012, 47(5): 108-114. |
[15] | 张天德1,左进明2,段伶计1. 广义improved KdV方程的守恒差分格式[J]. J4, 2011, 46(8): 4-7. |
|