您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 121-126.doi: 10.6040/j.issn.1671-9352.0.2018.503

• • 上一篇    

无偏基测量的可导引性

张强强,陈峥立*,袁凤茹   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 出版日期:2019-10-20 发布日期:2019-10-12
  • 作者简介:张强强(1992— ), 女, 硕士研究生, 研究方向为算子代数与量子计算. E-mail:zqq@snnu.edu.cn*通信作者简介:陈峥立(1973— ), 男, 副教授, 博士, 研究方向为算子代数与量子计算. E-mail:czl@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11571213,11601300,11771009)

Quantum steering of mutually unbiased measurements

ZHANG Qiang-qiang, CHEN Zheng-li*, YUAN Feng-ru   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Online:2019-10-20 Published:2019-10-12

摘要: 基于对量子可导引性和无偏基测量的一些研究,给出了可分态、纠缠纯态以及贝尔对角态在无偏基测量下的量子可导引性。

Abstract: Based on the study of some properties of the quantum steering and the mutually unbiased measurements, we have given the quantum steering of separable states, pure entangled states and Bell-diagonal states under mutually unbiased measurements.

Key words: quantum steering, mutually unbiased measurement, pauli matrix, incidence matrix

[1] SCHWLNGER J. Unitary operator bases[J]. Proceedings of the National Academy of Sciences of the United Ststes of America, 1960, 46(4):570-579.
[2] WOOTTERS W K, FIELDS B D. Optimal state-detemination by mutually unbaised measurements[J]. Annals of Physics, 1989, 191(2):363-381.
[3] RASTEGIN A E. On uncertainty relations and entanglement detection with mutually unbiased measurements[J]. Open Systems Information Dynamics, 2015, 22(1):1-13.
[4] CHEN Bin, MA Teng, FEI Shaoming. Entanglement detection using mutually unbiased measurements[J]. Physical Review A, 2014, 89(6):137-142.
[5] CHEN Bin, MA Teng, FEI Shaoming. General SIC measurement-based entanglement detection[J]. Quantum Information Processing, 2014, 14(6):2281-2290.
[6] 孙海鹏, 陈峥立, 杨丽丽. 关于无偏基和无偏测量的一个注记[J]. 纺织高校基础科学学报, 2017, 30(2):177-182. SUN Haipeng, CHEN Zhengli, YANG Lili. A note about MUBs and MUMs[J]. Basic Science Journal of Textile University, 2017, 30(2):177-182.
[7] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete[J]. Physical Review A, 1979, 47(10):696-702.
[8] BELL J S. On the Einstein-Podolsky-Rosen paradox[J]. Physics, 1964, 1(3):195-200.
[9] SCHRODINGER E. Discussion of probability relations between separated systems[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1935, 31(4):555-563.
[10] WERNER R F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model[J]. Physical Review A, 1989, 40(8):4277.
[11] WISEMAN H M, JONES S J, DOHERTY A C. Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox[J]. Physical Review Letters, 2007, 98(14):140402.
[12] JONES S J, WISEMAN H M, DOHERTY A C. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering[J]. Physical Review A, 2007, 76(5):400-403.
[13] BOWLES J, VERTESI T, QUINTINO M T, et al. One-way Einstein-Podolsky-Rosen steering[J]. Physical Review Letters, 2014, 112(20).
[14] BRANCIARD C, CAVALCANTI E G, WALBORN S P, et al. One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering[J]. Physical Review A, 2012, 85(1):281-289.
[15] YUN Z L, LE P T, BANCALL J D, et al. Quantum randomness extraction for various levels of characterization of the devices[J]. European Journal of Mechanics, 2014, 47(42):231-245.
[16] REID M D. Signifying quantum benchmarks for qubit teleportation and secure communication using Einstein-Podolsky-Rosen steering inequalities[J]. Physical Review A, 2013, 88(6):062338.
[17] PIANI M, WATROUS J. Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering[J]. Physical Review Letters, 2015, 114(6):060404.
[18] QUAN Q, ZHU H J, LIU S Y, et al. Steering Bell-diagonal states[J]. Scientific Reports, 2016, 6:22025.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙倩倩,李小南. 区间毕达哥拉斯模糊集的信息度量及其应用[J]. 《山东大学学报(理学版)》, 2019, 54(9): 43 -53 .
[2] 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83 -90 .
[3] 杨亚茹, 王永庆, 张志斌, 刘悦, 程学旗. 基于多元信息融合的用户关联模型[J]. 《山东大学学报(理学版)》, 2019, 54(9): 105 -113 .
[4] 高仕娟,张建华. 含幂等元的环上的(α,β)-导子的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(4): 1 -5 .
[5] 刘春辉,张海燕,李玉毛. 否定非对合剩余格的双极值模糊理想格[J]. 《山东大学学报(理学版)》, 2019, 54(9): 29 -35 .
[6] 陈璐,张晓光. 一类自适应网络上的传染病模型研究[J]. 《山东大学学报(理学版)》, 2019, 54(9): 76 -82 .
[7] 徐凤生,于秀清,张立华. 信息智能融合与它的P-增广矩阵推理生成[J]. 《山东大学学报(理学版)》, 2019, 54(9): 22 -28 .
[8] 张廷海,覃锋. 基于重叠函数和分组函数的蕴涵分配性[J]. 《山东大学学报(理学版)》, 2019, 54(9): 36 -42 .
[9] 李海侠. 一类具有密度制约的捕食-食饵扩散模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 54 -61 .
[10] 张申贵. 一类基尔霍夫型微分系统的周期解[J]. 《山东大学学报(理学版)》, 2019, 54(10): 1 -6 .