您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 16-22.doi: 10.6040/j.issn.1671-9352.0.2019.353

• • 上一篇    

多线性Hardy-Littlewood极大算子交换子的有界性

王敏,方小珍,瞿萌,束立生   

  1. 安徽师范大学数学与统计学院, 安徽 芜湖 241003
  • 发布日期:2020-02-14
  • 作者简介:王敏(1977— ), 女,硕士研究生,讲师,研究方向为调和分析. E-mail:YMZ1121@163.com
  • 基金资助:
    国家自然科学基金资助项目(11871096,11771223);安徽师范大学科研培育基金资助项目(2018XJJ93)

Boundedness for commutator of multilinear Hardy-Littlewood maximal operator

WANG Min, FANG Xiao-zhen, QU Meng, SHU Li-sheng   

  1. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, Anhui, China
  • Published:2020-02-14

摘要: 利用中间值法以及二进制方体的性质,得到了多线性Hardy-Littlewood极大算子M与局部可积函数bj所生成的一类极大交换子Mbj(j=1,2,…,m)Lp1(Rn)×Lp2(Rn)×…×Lpm(Rn)→Lq(Rn)有界性。

关键词: 多线性Hardy-Littlewood极大算子, 交换子, 平均振荡函数空间, Lipschiz函数空间

Abstract: By using the method of intermediate value and the properties of binary cubes, the mapping property from Lp1(Rn)×Lp2(Rn)×…×Lpm(Rn)to Lq(Rn)of the commutator Mbj(j=1,2,…,m) generated by local integrable function bj and multilinear Hardy-Littlewood maximal operator M is obtained.

Key words: multilinear Hardy-Littlewood maximal operator, commutator, average oscillation function space, Lipschiz function space

中图分类号: 

  • O174.2
[1] COIFMAN R, ROCHBERG R, WEISS G. Factorization theorems for Hardy spaces in several variables[J]. Ann of Math, 1976, 103(3):611-635.
[2] JANSON S. Mean oscillation and commutators of singular integral operators[J]. Ark Math, 1978, 16(2):263-270.
[3] CHANILLO S. A note on commutators[J]. Indiana Univ Math J, 1982, 31(1):7-16.
[4] GARCIA-CUERVA J, HARBOURE E, SEGOVIA C, et al. Weighted norm inequalities for commutators of strongly singular integrals[J]. Indiana Univ Math J, 1991, 40(4):1397-1420.
[5] SEGOVIA C, TORREA J L. Weighted inequalities for commutators of fractional and singular integrals[J]. Publ Mat, 1991, 35(1):209-235.
[6] LI Dengfeng, HU Guoen, SHI Xianliang. Weighted norm inequalities for the maximal commutators of singular integral operators[J]. J Math Anal Appl, 2006, 319(2):509-521.
[7] GOGATISHVILI A, MUSTAFAYEV R, AGCAYAZL M. Weak-type estimates in Morrey spaces for maximal commutator and commutator of maximal function[J]. Tokyo J Math, 2018, 41(1):193-218.
[8] GRAFAKOS L, TORRES R H. Multilinear Calderón-Zygmund theory[J]. Adv in Math, 2002, 165(1):124-164.
[9] WANG Wei, XU Jingshi. Commutators of multilinear singular integrals with Lipschitz functions[J]. Communications in Math Res, 2009, 25(4):318-328.
[10] LERNER A K, OMBROSI S, PÉREZ C, et al. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory[J]. Adv Math, 2009, 220(4):1222-1264.
[11] WANG Dinghuai, ZHOU Jiang. Necessary and sufficient conditions for boundedness of commutators of bilinear Hardy-Littlewood maximal function[EB/OL].(2017-08-31)[2018-10-02].https://arxiv.org/pdf/1708.09549.pdf.
[12] WANG Dinghuai, ZHOU Jiang, TENG Zhidong. On the compactness of commutators of Hardy-Littlewood maximal operator[J]. Anal Math, 2019, 45(3):599-619.
[13] ZHANG Pu. Multiple weighted estimates for commutators of multilinear maximal function[J]. Acta Math Sin(Engl Ser), 2015, 31(6):973-994.
[14] TANG Lin. Weighted estimates for vector-valued commutators of multilinear operators[J]. Proc Roy Soc Edinburgh Sect A, 2008, 138(4):897-922.
[15] DIENING L. Maximal function on generalized Lebesgue spaces Lp(·)[J]. Mathematical Inequalities and Applications, 2004, 7(2):245-253.
[16] STEIN E M. Singular integrals and differentiability properties of functions[M]. Princeton:Princeton University Press, 1970.
[17] HYTÖNEN T P. The Lp-to-Lq boundedness of commutators with applications to the Jacobian operator[EB/OL].(2018-04-30)[2018-10-05]. https://arxiv.org/pdf/1804.11167.pdf.
[1] 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75.
[2] 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50.
[3] 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58.
[4] 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105.
[5] 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110.
[6] 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18.
[7] 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10.
[8] 苟银霞, 陶双平, 戴惠萍. Herz型Hardy空间上粗糙核分数次积分及其交换子的加权估计[J]. 山东大学学报(理学版), 2014, 49(07): 80-87.
[9] 李浩静,陈峥立*,梁丽丽. 关于Schr-dinger不确定性关系的研究[J]. 山东大学学报(理学版), 2014, 49(06): 67-73.
[10] 赵凯,纪春静,黄智. 一类Marcinkiewicz积分交换子在Herz型Hardy空间中的有界性[J]. J4, 2013, 48(6): 1-4.
[11] 闫彦宗,邵旭馗,王素萍. 变量核的 Marcinkiewicz 高阶交换子在Hardy空间的有界性[J]. J4, 2013, 48(2): 67-71.
[12] 杜红珊,张蕾. 振荡积分算子交换子的Lipschitz估计*[J]. J4, 2012, 47(4): 80-83.
[13] 王立伟1,瞿萌2,范国良1. 齐次MorreyHerz空间中多线性交换子的中心BMO估计[J]. J4, 2012, 47(12): 82-87.
[14] 赵凯,董鹏娟,邵帅. 分数次积分算子交换子在λ-中心Morrey空间上的加权有界性[J]. J4, 2011, 46(12): 88-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!