《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 16-22.doi: 10.6040/j.issn.1671-9352.0.2019.353
• • 上一篇
王敏,方小珍,瞿萌,束立生
WANG Min, FANG Xiao-zhen, QU Meng, SHU Li-sheng
摘要: 利用中间值法以及二进制方体的性质,得到了多线性Hardy-Littlewood极大算子M与局部可积函数bj所生成的一类极大交换子Mbj(j=1,2,…,m)的Lp1(Rn)×Lp2(Rn)×…×Lpm(Rn)→Lq(Rn)有界性。
中图分类号:
[1] COIFMAN R, ROCHBERG R, WEISS G. Factorization theorems for Hardy spaces in several variables[J]. Ann of Math, 1976, 103(3):611-635. [2] JANSON S. Mean oscillation and commutators of singular integral operators[J]. Ark Math, 1978, 16(2):263-270. [3] CHANILLO S. A note on commutators[J]. Indiana Univ Math J, 1982, 31(1):7-16. [4] GARCIA-CUERVA J, HARBOURE E, SEGOVIA C, et al. Weighted norm inequalities for commutators of strongly singular integrals[J]. Indiana Univ Math J, 1991, 40(4):1397-1420. [5] SEGOVIA C, TORREA J L. Weighted inequalities for commutators of fractional and singular integrals[J]. Publ Mat, 1991, 35(1):209-235. [6] LI Dengfeng, HU Guoen, SHI Xianliang. Weighted norm inequalities for the maximal commutators of singular integral operators[J]. J Math Anal Appl, 2006, 319(2):509-521. [7] GOGATISHVILI A, MUSTAFAYEV R, AGCAYAZL M. Weak-type estimates in Morrey spaces for maximal commutator and commutator of maximal function[J]. Tokyo J Math, 2018, 41(1):193-218. [8] GRAFAKOS L, TORRES R H. Multilinear Calderón-Zygmund theory[J]. Adv in Math, 2002, 165(1):124-164. [9] WANG Wei, XU Jingshi. Commutators of multilinear singular integrals with Lipschitz functions[J]. Communications in Math Res, 2009, 25(4):318-328. [10] LERNER A K, OMBROSI S, PÉREZ C, et al. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory[J]. Adv Math, 2009, 220(4):1222-1264. [11] WANG Dinghuai, ZHOU Jiang. Necessary and sufficient conditions for boundedness of commutators of bilinear Hardy-Littlewood maximal function[EB/OL].(2017-08-31)[2018-10-02].https://arxiv.org/pdf/1708.09549.pdf. [12] WANG Dinghuai, ZHOU Jiang, TENG Zhidong. On the compactness of commutators of Hardy-Littlewood maximal operator[J]. Anal Math, 2019, 45(3):599-619. [13] ZHANG Pu. Multiple weighted estimates for commutators of multilinear maximal function[J]. Acta Math Sin(Engl Ser), 2015, 31(6):973-994. [14] TANG Lin. Weighted estimates for vector-valued commutators of multilinear operators[J]. Proc Roy Soc Edinburgh Sect A, 2008, 138(4):897-922. [15] DIENING L. Maximal function on generalized Lebesgue spaces Lp(·)[J]. Mathematical Inequalities and Applications, 2004, 7(2):245-253. [16] STEIN E M. Singular integrals and differentiability properties of functions[M]. Princeton:Princeton University Press, 1970. [17] HYTÖNEN T P. The Lp-to-Lq boundedness of commutators with applications to the Jacobian operator[EB/OL].(2018-04-30)[2018-10-05]. https://arxiv.org/pdf/1804.11167.pdf. |
[1] | 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75. |
[2] | 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50. |
[3] | 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58. |
[4] | 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105. |
[5] | 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110. |
[6] | 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18. |
[7] | 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10. |
[8] | 苟银霞, 陶双平, 戴惠萍. Herz型Hardy空间上粗糙核分数次积分及其交换子的加权估计[J]. 山东大学学报(理学版), 2014, 49(07): 80-87. |
[9] | 李浩静,陈峥立*,梁丽丽. 关于Schr-dinger不确定性关系的研究[J]. 山东大学学报(理学版), 2014, 49(06): 67-73. |
[10] | 赵凯,纪春静,黄智. 一类Marcinkiewicz积分交换子在Herz型Hardy空间中的有界性[J]. J4, 2013, 48(6): 1-4. |
[11] | 闫彦宗,邵旭馗,王素萍. 变量核的 Marcinkiewicz 高阶交换子在Hardy空间的有界性[J]. J4, 2013, 48(2): 67-71. |
[12] | 杜红珊,张蕾. 振荡积分算子交换子的Lipschitz估计*[J]. J4, 2012, 47(4): 80-83. |
[13] | 王立伟1,瞿萌2,范国良1. 齐次MorreyHerz空间中多线性交换子的中心BMO估计[J]. J4, 2012, 47(12): 82-87. |
[14] | 赵凯,董鹏娟,邵帅. 分数次积分算子交换子在λ-中心Morrey空间上的加权有界性[J]. J4, 2011, 46(12): 88-92. |
|