您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (11): 97-107.doi: 10.6040/j.issn.1671-9352.0.2019.411

• • 上一篇    下一篇

2-一致模基于重叠函数的(α,O)-迁移性

宋一凡,赵彬*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 发布日期:2019-11-06
  • 作者简介:宋一凡(1995— ), 女, 硕士研究生, 研究方向为格上拓扑与非经典数理逻辑. E-mail:songyifan@snnu.edu.cn*通信作者简介:赵彬(1965— ), 男, 博士, 教授, 博士生导师, 研究方向为格上拓扑与非经典数理逻辑. E-mail:zhaobin@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11531009)

On the (α,O)-migrative of 2-uninorms over overlap functions

SONG Yi-fan, ZHAO Bin*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Published:2019-11-06

摘要: 根据一致模基于重叠函数的(α,O)-迁移性概念,引入2-一致模基于重叠函数的(α,O)-迁移性概念,给出(0,O)-迁移和(1,O)-迁移的等价刻画。进一步,分别讨论五类常见2-一致模基于重叠函数的(α,O)-迁移性,特别地,当U 2∈U 2k,U 20,k,U 20,1,U 21,0时,刻画了满足迁移性方程的重叠函数的结构特征。

关键词: 2-一致模, 重叠函数, 迁移性

Abstract: Based on the concept of (α,O)-migrative of uninorms over overlap functions, the notion of (α,O)-migrative of 2-uninorms over overlap functions is introduced, the equivalent characterizations of(0,O)-migrative and(1,O)-migrative are given. Furthermore,(α,O)-migrative of 2-uninorm U2 over overlap function O when the 2-uninorm U2 belongs to five common types of 2-uninorms are discussed, respectively, in particular, when U 2∈U 2k, U 20,k, U 20,1, U 21,0, the structure of overlap functions under the migrativity functional equation is characterized.

Key words: 2-uninorm, overlap function, migrativity property

中图分类号: 

  • O159
[1] BUSTINCE H, FERNÁNDEZ J, MESIAR R, et al. Overlap index, overlap functions and migrativity[C] // Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference. Lisbon: [s.n.] , 2009: 300-305.
[2] QIAO Junsheng, HU Baoqing. On generalized migrativity property for overlap functions[J]. Fuzzy Sets and Systems, 2019, 357:91-116.
[3] QIAO Junsheng, HU Baoqing. On the migrativity of uninorms and nullnorms over overlap and grouping functions[J]. Fuzzy Sets and Systems, 2018, 346:1-54.
[4] BUSTINCE H, DE BAETS B, FERNÁNDEZ J, et al. A generalization of the migrativity property of aggregation functions[J]. Information Sciences, 2012, 191(191):76-85.
[5] MONTERO J, GÓMEZ D, MUÑOZ S. Fuzzy information representation for decision aiding[C] // Proceedings of the IPMU Conference. Málaga, Spain: [s.n.] , 2008: 1425-1430.
[6] MONTERO J, LÓPEZ V, GÓMEZ D. The role of fuzziness in decision making[C] // Fuzzy Logic: a Spectrum of Applied and Theoretical Issues. Berlin: [s.n.] , 2007: 337-349.
[7] ROY B. Decision science or decision-aid science[J]. European Journal of Operational Research, 1993, 66(2):184-203.
[8] BACZYNSKI M, JAYARAM B. Fuzzy implications[M]. Berlin: Springer-Verlag, 2008.
[9] FODOR J, YAGER R R, RYBALOV A. Structure of uninorms[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1997, 5(4):411-427.
[10] AKELLA P. Structure of n-uninorms[J]. Fuzzy Sets and Systems, 2007, 158(15):1631-1651.
[1] 张廷海,覃锋. 基于重叠函数和分组函数的蕴涵分配性[J]. 《山东大学学报(理学版)》, 2019, 54(9): 36-42.
[2] 程亚菲,赵彬. 模糊蕴涵关于合取2-一致模满足输入律的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(8): 20-32.
[3] 刘晓,周红军. (O,N)-蕴涵及其刻画[J]. 《山东大学学报(理学版)》, 2019, 54(5): 99-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!