您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (5): 99-111.doi: 10.6040/j.issn.1671-9352.0.2018.381

• • 上一篇    下一篇

(O,N)-蕴涵及其刻画

刘晓,周红军*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 发布日期:2019-05-09
  • 作者简介:刘晓(1993— ),女,硕士研究生,研究方向为不确定性推理. E-mail:13619225818@163.com*通信作者简介:周红军(1980— ),男,教授,博士生导师,研究方向为不确定性推理. E-mail:hjzhou@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61473336);陕西省青年科技新星计划(2016KJXX-24)

(O,N)-implication and its characterizations

LIU Xiao, ZHOU Hong-jun*   

  1. College of Mathematics and Information Science, Shaanxi Normal University, Xian, 710119, Shaanxi, China
  • Published:2019-05-09

摘要: 模糊蕴涵在模糊集理论的理论建立和应用方面都发挥着非常重要的作用。常见的模糊蕴涵通常是由三角模、三角余模和模糊否定通过合适的方法构造而成。根据不同的构造方法,大致可以将模糊蕴涵分为5类,即(S,N)-蕴涵、R-蕴涵QL-蕴涵Yager蕴涵和序和蕴涵本文从经典逻辑中的重言式p→q≡(p∧q)出发,在模糊逻辑中研究由重叠函数O和模糊否定N按上述方式生成的模糊蕴涵,称为(O,N)-蕴涵本文研究(O,N)-蕴涵的基本性质和等价刻画,研究了由(O,N)-蕴涵和模糊否定诱导的类函数和重叠函数

关键词: 模糊蕴涵, (O,N)-蕴涵, 重叠函数, 模糊否定

Abstract: Fuzzy implications paly an important role in both theoretic and applied communities of fuzzy set theory. The well-known fuzzy implications are usually constructed in appropriate ways from t-norms, t-conorms and fuzzy negations, and according to construction methods, they can be roughly classified into five classes, namely (S,N)-implications, R-implications, QL-implications, Yagers implications and ordinal sum implications. We introduce a new class of implications, called (O,N)-implications, generated from overlap functions O and fuzzy negations N inspired by the classical tautology p→q≡(p∧q). We discuss the properties of (O,N)-implications and give some characterizations of them. Finally, grouping functions and overlap functions generated by (O,N)-implications and fuzzy negations are investigated.

Key words: fuzzy implication, (O,N)-implication, overlap function, fuzzy negation

中图分类号: 

  • O142
[1] BACZYNSKI M. JAYARAM B. Fuzzy implication[M]. Berlin: Springer, 2008.
[2] MAS M, MONSERRAT M, TORRENS J, et al. A survey on fuzzy implication functions[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(6):1107-1121.
[3] YAGER R R. On some new classes of implication operators and their role in approximate reasoning[J]. Information Sciences, 2004, 167(1):193-216.
[4] KERRE E E, NACHTEGAEL M. Fuzzy techniques in image processing[M]. Berlin: Springer, 2008.
[5] TRILLAS E, ALSINA C. On the law[p∧q→r] ≡[(p→r)∨(q→r)] in fuzzy logic[J]. IEEE Transactions on Fuzzy Systems, 2002, 10(1):84-88.
[6] ZHANG Huaguang, LIU Derong. Fuzzy modeling and fuzzy control[M]. Boston: Springer, 2006.
[7] ZADEH L A, KACPRZYK J. Computing with words in information/intelligent systems: foundations[M]. Berlin: Springer, 1999.
[8] BACZYNSKI M, JAYARAM B. On the characterizations of (S,N)-implication[J]. Fuzzy Sets and Systems, 2007, 158(15):1713-1727.
[9] BAETS B D,FODOR J C. Residual operators of uninorms[J]. Soft Computing, 1999, 3(2):89-100.
[10] MAS M, MONSERRAT M, TORRENS J. QL-implications versus D-implications[J]. Kybernetika, 2006, 42(3):351-366.
[11] SU Yong, XIE Aifang, LIU Huawen. On ordinal sum implications[J]. Information Sciences, 2015, 293:251-262.
[12] 王国俊. 非经典数理逻辑与近似推理[M]. 2 版. 北京: 科学出版社, 2008. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. 2nd ed. Beijing: Science Press, 2008.
[13] DEMIRLI K, DE BAETS B. Basic properties of implicators in a residual framework[J]. Tatra Mountains Mathematical Publications, 1999, 16(1):31-46.
[14] 于俊红, 周红军. (T,N)-蕴涵及其基本性质[J]. 山东大学学报(理学版), 2017, 52(11):71-81. YU Junhong, ZHOU Hongjun. (T,N)-implication and its basic properties[J]. Journal of Shandong University(Natural Sciences), 2017, 52(11):71-81.
[15] PINHEIRO J, BEDREGAL B, SANTIAGO RHN, et al. (T,N)-implications[C] // IEEE International Conference on Fuzzy Systems. USA: IEEE, 2017: 1-6.
[16] BUSTINCE H, FERNANDEZ J, MESIAR R, et al. Overlap functions[J]. Nonlinear Analysis, 2010, 72(3):1488-1499.
[17] PAGOLA M, MESIAR R, HULLERMEIER E. Grouping, overlap, and generalized bientropic functions for fuzzy modeling of pairwise comparisons[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(3):405-415.
[1] 彭家寅. 剩余格上的落影模糊滤子[J]. 山东大学学报(理学版), 2018, 53(2): 52-64.
[2] 于俊红,周红军. (T,N)-蕴涵及其基本性质[J]. 山东大学学报(理学版), 2017, 52(11): 71-81.
[3] 郝加兴,吴洪博. 基于非交换剩余格的模糊蕴涵滤子及其性质[J]. J4, 2010, 45(10): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王培名,陈兴蜀,王海舟,王文贤. 多策略融合的微博数据获取技术研究[J]. 《山东大学学报(理学版)》, 2019, 54(5): 28 -36 .
[2] 代新敏,谢晓尧. 一种抗去同步的轻量级RFID双向认证协议[J]. 《山东大学学报(理学版)》, 2019, 54(5): 52 -60 .
[3] 周安民,户磊,刘露平,贾鹏,刘亮. 基于熵时间序列的恶意Office文档检测技术[J]. 《山东大学学报(理学版)》, 2019, 54(5): 1 -7 .
[4] 巩金秋,徐进,胡发胜. 投入产出网络中的关键产业[J]. 《山东大学学报(理学版)》, 2019, 54(5): 61 -67 .
[5] 邹绍辉,张甜,闫晓霞. 基于H-P滤波法的国内碳价波动规律及区域特征[J]. 《山东大学学报(理学版)》, 2019, 54(5): 77 -87 .
[6] 彭家寅. 基于完备剩余格值逻辑的下推自动机与上下文无关文法[J]. 《山东大学学报(理学版)》, 2019, 54(5): 112 -126 .
[7] 卢政宇,李光松,申莹珠,张彬. 基于连续特征的未知协议消息聚类算法[J]. 《山东大学学报(理学版)》, 2019, 54(5): 37 -43 .
[8] 刘春辉,李玉毛,张海燕. 否定非对合剩余格的双极值模糊理想[J]. 《山东大学学报(理学版)》, 2019, 54(5): 88 -98 .
[9] 徐洋,孙建忠,黄磊,谢晓尧. 基于WiFi定位的区域人群轨迹模型Symbol`@@[J]. 《山东大学学报(理学版)》, 2019, 54(5): 8 -20 .
[10] 刘振鹏,王文胜,贺玉鹏,孙静薇,张彬. 一种SDN控制节点故障恢复的部署策略[J]. 《山东大学学报(理学版)》, 2019, 54(5): 21 -27 .