您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (5): 88-98.doi: 10.6040/j.issn.1671-9352.0.2018.386

• • 上一篇    下一篇

否定非对合剩余格的双极值模糊理想

刘春辉,李玉毛,张海燕   

  1. 赤峰学院数学与统计学院, 内蒙古 赤峰 024001
  • 发布日期:2019-05-09
  • 作者简介:刘春辉(1982— ), 男, 硕士, 副教授, 研究方向为非经典数理逻辑与拓扑学. E-mail:chunhuiliu1982@163.com
  • 基金资助:
    内蒙古自治区高等学校科学研究项目(NJZY18206)

Bipolar fuzzy ideals in negative non-involutive residuated lattices

LIU Chun-hui, LI Yu-mao, ZHANG Hai-yan   

  1. Department of Mathematics and Statistics, Chifeng University, Chifeng 024001, Inner Mongolia, China
  • Published:2019-05-09

摘要: 基于双极值模糊集理论研究否定非对合剩余格的理想问题。首先,引入否定非对合剩余格的双极值模糊理想概念并讨论其基本性质和等价刻画。其次,借助于双极值模糊集的正t-截集和负s-截集等概念考察了双极值模糊理想与理想的关系。最后,在一个否定非对合剩余格的全体双极值模糊理想之集上构造等价关系,并获得了相应的商集性质。

关键词: 模糊逻辑, 逻辑代数, 否定非对合剩余格, 理想, 双极值模糊理想

Abstract: Based on the theory of bipolar fuzzy sets, the problem of ideals in negative non-involutive residuated lattices is studied. Firstly, the concept of bipolar fuzzy ideals in negative non-involutive residuated lattices is introduced, and some their basic properties and equivalent characterizations are discussed. Secondly, the relationships between bipolar fuzzy ideals and ideals are investigated by using the concepts of positive t-cut and negative s-cut set of bipolar valued fuzzy sets. Finally, some equivalence relations are constructed on the set of all bipolar fuzzy ideals in a negative non-involutive residuated lattice, and the properties of corresponding quotient sets are obtained. It further expands the way for revealing the structural characteristics of negative non-involutive residuated lattices.

Key words: fuzzy logic, logical algebra, negative non-involutive residuated lattice, ideal, bipolar fuzzy ideal

中图分类号: 

  • O141.1
[1] 王国俊.非经典数理逻辑与近似推理[M].北京:科学出版社, 2003. WANG Guojun. Nonclassical mathematical logic and approximate reasoning[M]. Beijing: Science Press, 2003.
[2] WARD M, DILWORTH R P. Residuated lattices[J]. Transactions of the American Mathematical Society, 1939, 45:335-354.
[3] PAVELKA J. On fuzzy logic Ⅰ, Ⅱ, Ⅲ[J]. Zeitschrift F Math Logic and Grundlagend Math, 1979, 25(1):45-52; 25(2):119-134; 25(5):447-464.
[4] WANG Guojun, ZHOU Hongjun. Introduction to mathematical logic and resolution principle[M]. 2nd ed. Beijing: Science Press, 2009.
[5] HÁJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998.
[6] XU Yang, RUAN D, QIN Keyun, et al. Lattice-valued logics[M]. Berlin: Springer, 2003.
[7] 裴道武. MTL代数的特征定理[J]. 数学学报, 2007, 50(6):1201-1206. PEI Daowu. The characterizations of MTL algebras[J]. Acta Mathematica Sincia, 2007, 50(6):1201-1206.
[8] TURUNEN E. Boolean deductive systems of BL-algebras[J]. Arch Math Logic, 2001, 40(6):467-473.
[9] MICHIRO K, WIESLAW A D. Filter theory of BL-algebras[J]. Soft Computing, 2008, 12(5):419-423.
[10] ZHU Yiquan, XU Yang. On filter theory of residuated lattices[J]. Information Sciences, 2010, 180(16):3614-3632.
[11] DUMITRU B, DANA P. Some types of filters on residuated lattices[J]. Soft Computing, 2014, 18(5):825-837.
[12] LIU Yonglin, LIU Sanyang, XU Yang, et al. ILI-ideals and prime LI-ideals in lattice implication algebras[J]. Information Sciences, 2003, 155(1/2):157-175.
[13] 刘春辉. Fuzzy蕴涵代数的滤子理论[J]. 山东大学学报(理学版), 2013, 48(9):73-77. LIU Chunhui. Theory of filters in Fuzzy implication algebras[J]. Journal of Shandong University(Natural Science), 2013, 48(9):73-77.
[14] LELE C, NGANOU J B. MV-algebras derived from ideals in BL-algebras[J]. Fuzzy Sets and Systems, 2013, 218(4):103-113.
[15] LIU Yi, QIN Yao, QIN Xiaoyan, et al. Ideals and fuzzy ideals on residuated lattices[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1):239-253.
[16] 刘春辉. 否定非对合剩余格的LI-理想理论[J]. 高校应用数学学报, 2015, 30(4):445-456. LIU Chunhui. LI-ideals theory in negative non-involutive residuated lattices[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4):445-456.
[17] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[18] ZHANG W R. Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis[C] // Proceedings of the First International Joint Conference of the North American Fuzzy Information Processing Society Biannual Conference, Berlin: Springer, 1994: 305-309.
[19] ZHANG W R. Yin Yang bipolar relativity: a unifying theory of nature, agents and causality wihth applications in quantum computing, cogintive informatics and lift sciences[M]. US: IGI Global, 2011.
[20] LEE K M. Bipolar-valued fuzzy sets and their operations[C] // Proceedings of International Conference on Intelligent Technologies, Bangkok Thailand: Springer, 2000: 307-312.
[21] AKRAM M. Bipolar fuzzy graphs[J]. Information Sciences, 2011, 181(24):5548-5564.
[22] SAEID A B, RAFSANJANI M K. Some results in bipolar-valued fuzzy BCK/BCI-algebras[C] // Proceedings of International Conference on Networked Digital Technologies, Prague, Czech Republic: Springer, 2010: 163-168.
[23] MAJUNDER S K. Bipolar-valued fuzzy in Γ-semigroups[J]. Mathematica Aeterna, 2012, 2(3):203-213.
[24] MAHMOOD K, HAYAT K. Characterizations of Hemi-rings by their bipolar-valued fuzzy h-ideals[J]. Information Sciences Letters, 2015, 4(2):51-59.
[25] JANA C, PAL M, SAEID A B.(∈,∈∨q)-bipolar-valued fuzzy BCK/BCI-algebras[J]. Missouri Journal of Mathematical Sciences, 2017, 29(5):101-112.
[1] 刘春辉. Heyting代数的扩张模糊滤子[J]. 《山东大学学报(理学版)》, 2019, 54(2): 57-65.
[2] 乔虎生,石学勤. 弱挠自由Rees商序S-系的同调分类[J]. 山东大学学报(理学版), 2018, 53(8): 49-52.
[3] 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报(理学版), 2018, 53(6): 86-94.
[4] 刘春辉. 关于格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想[J]. 山东大学学报(理学版), 2018, 53(2): 65-72.
[5] 梁颖,崔艳丽,吴洪博. 基于BL系统的演绎系统集代数的剩余格属性[J]. 山东大学学报(理学版), 2017, 52(11): 65-70.
[6] 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110.
[7] 刘慧珍,辛小龙,王军涛. Monadic MV-代数上的微分[J]. 山东大学学报(理学版), 2016, 51(8): 53-60.
[8] 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107.
[9] 彭家寅. BL-代数的扰动模糊理想[J]. 山东大学学报(理学版), 2016, 51(10): 78-94.
[10] 周建仁, 吴洪博. IMTL逻辑系统的一种新扩张形式[J]. 山东大学学报(理学版), 2015, 50(12): 28-34.
[11] 薛丽霞, 李志慧, 谢佳丽. 对3条超边的超圈存取结构最优信息率的一点注记[J]. 山东大学学报(理学版), 2015, 50(11): 60-66.
[12] 刘卫锋. 布尔代数的软商布尔代数[J]. 山东大学学报(理学版), 2015, 50(08): 57-61.
[13] 张晓燕. 有限主理想环上接近MDR码[J]. 山东大学学报(理学版), 2015, 50(06): 59-63.
[14] 沈冲, 姚卫. 模糊完备格上模糊G-理想和模糊Galois伴随之间的一一对应[J]. 山东大学学报(理学版), 2015, 50(04): 36-41.
[15] 杨永伟, 贺鹏飞, 李毅君. BL-代数中的落影模糊理想[J]. 山东大学学报(理学版), 2015, 50(02): 83-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周安民,户磊,刘露平,贾鹏,刘亮. 基于熵时间序列的恶意Office文档检测技术[J]. 《山东大学学报(理学版)》, 2019, 54(5): 1 -7 .
[2] 巩金秋,徐进,胡发胜. 投入产出网络中的关键产业[J]. 《山东大学学报(理学版)》, 2019, 54(5): 61 -67 .
[3] 邹绍辉,张甜,闫晓霞. 基于H-P滤波法的国内碳价波动规律及区域特征[J]. 《山东大学学报(理学版)》, 2019, 54(5): 77 -87 .
[4] 彭家寅. 基于完备剩余格值逻辑的下推自动机与上下文无关文法[J]. 《山东大学学报(理学版)》, 2019, 54(5): 112 -126 .
[5] 卢政宇,李光松,申莹珠,张彬. 基于连续特征的未知协议消息聚类算法[J]. 《山东大学学报(理学版)》, 2019, 54(5): 37 -43 .
[6] 徐洋,孙建忠,黄磊,谢晓尧. 基于WiFi定位的区域人群轨迹模型Symbol`@@[J]. 《山东大学学报(理学版)》, 2019, 54(5): 8 -20 .
[7] 刘振鹏,王文胜,贺玉鹏,孙静薇,张彬. 一种SDN控制节点故障恢复的部署策略[J]. 《山东大学学报(理学版)》, 2019, 54(5): 21 -27 .
[8] 屈娟,冯玉明,李艳平,李丽. 可证明的基于扩展混沌映射的匿名多服务器身份认证协议[J]. 《山东大学学报(理学版)》, 2019, 54(5): 44 -51 .
[9] 王培名,陈兴蜀,王海舟,王文贤. 多策略融合的微博数据获取技术研究[J]. 《山东大学学报(理学版)》, 2019, 54(5): 28 -36 .
[10] 代新敏,谢晓尧. 一种抗去同步的轻量级RFID双向认证协议[J]. 《山东大学学报(理学版)》, 2019, 54(5): 52 -60 .