《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (5): 88-98.doi: 10.6040/j.issn.1671-9352.0.2018.386
刘春辉,李玉毛,张海燕
LIU Chun-hui, LI Yu-mao, ZHANG Hai-yan
摘要: 基于双极值模糊集理论研究否定非对合剩余格的理想问题。首先,引入否定非对合剩余格的双极值模糊理想概念并讨论其基本性质和等价刻画。其次,借助于双极值模糊集的正t-截集和负s-截集等概念考察了双极值模糊理想与理想的关系。最后,在一个否定非对合剩余格的全体双极值模糊理想之集上构造等价关系,并获得了相应的商集性质。
中图分类号:
[1] 王国俊.非经典数理逻辑与近似推理[M].北京:科学出版社, 2003. WANG Guojun. Nonclassical mathematical logic and approximate reasoning[M]. Beijing: Science Press, 2003. [2] WARD M, DILWORTH R P. Residuated lattices[J]. Transactions of the American Mathematical Society, 1939, 45:335-354. [3] PAVELKA J. On fuzzy logic Ⅰ, Ⅱ, Ⅲ[J]. Zeitschrift F Math Logic and Grundlagend Math, 1979, 25(1):45-52; 25(2):119-134; 25(5):447-464. [4] WANG Guojun, ZHOU Hongjun. Introduction to mathematical logic and resolution principle[M]. 2nd ed. Beijing: Science Press, 2009. [5] HÁJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998. [6] XU Yang, RUAN D, QIN Keyun, et al. Lattice-valued logics[M]. Berlin: Springer, 2003. [7] 裴道武. MTL代数的特征定理[J]. 数学学报, 2007, 50(6):1201-1206. PEI Daowu. The characterizations of MTL algebras[J]. Acta Mathematica Sincia, 2007, 50(6):1201-1206. [8] TURUNEN E. Boolean deductive systems of BL-algebras[J]. Arch Math Logic, 2001, 40(6):467-473. [9] MICHIRO K, WIESLAW A D. Filter theory of BL-algebras[J]. Soft Computing, 2008, 12(5):419-423. [10] ZHU Yiquan, XU Yang. On filter theory of residuated lattices[J]. Information Sciences, 2010, 180(16):3614-3632. [11] DUMITRU B, DANA P. Some types of filters on residuated lattices[J]. Soft Computing, 2014, 18(5):825-837. [12] LIU Yonglin, LIU Sanyang, XU Yang, et al. ILI-ideals and prime LI-ideals in lattice implication algebras[J]. Information Sciences, 2003, 155(1/2):157-175. [13] 刘春辉. Fuzzy蕴涵代数的滤子理论[J]. 山东大学学报(理学版), 2013, 48(9):73-77. LIU Chunhui. Theory of filters in Fuzzy implication algebras[J]. Journal of Shandong University(Natural Science), 2013, 48(9):73-77. [14] LELE C, NGANOU J B. MV-algebras derived from ideals in BL-algebras[J]. Fuzzy Sets and Systems, 2013, 218(4):103-113. [15] LIU Yi, QIN Yao, QIN Xiaoyan, et al. Ideals and fuzzy ideals on residuated lattices[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1):239-253. [16] 刘春辉. 否定非对合剩余格的LI-理想理论[J]. 高校应用数学学报, 2015, 30(4):445-456. LIU Chunhui. LI-ideals theory in negative non-involutive residuated lattices[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4):445-456. [17] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353. [18] ZHANG W R. Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis[C] // Proceedings of the First International Joint Conference of the North American Fuzzy Information Processing Society Biannual Conference, Berlin: Springer, 1994: 305-309. [19] ZHANG W R. Yin Yang bipolar relativity: a unifying theory of nature, agents and causality wihth applications in quantum computing, cogintive informatics and lift sciences[M]. US: IGI Global, 2011. [20] LEE K M. Bipolar-valued fuzzy sets and their operations[C] // Proceedings of International Conference on Intelligent Technologies, Bangkok Thailand: Springer, 2000: 307-312. [21] AKRAM M. Bipolar fuzzy graphs[J]. Information Sciences, 2011, 181(24):5548-5564. [22] SAEID A B, RAFSANJANI M K. Some results in bipolar-valued fuzzy BCK/BCI-algebras[C] // Proceedings of International Conference on Networked Digital Technologies, Prague, Czech Republic: Springer, 2010: 163-168. [23] MAJUNDER S K. Bipolar-valued fuzzy in Γ-semigroups[J]. Mathematica Aeterna, 2012, 2(3):203-213. [24] MAHMOOD K, HAYAT K. Characterizations of Hemi-rings by their bipolar-valued fuzzy h-ideals[J]. Information Sciences Letters, 2015, 4(2):51-59. [25] JANA C, PAL M, SAEID A B.(∈,∈∨q)-bipolar-valued fuzzy BCK/BCI-algebras[J]. Missouri Journal of Mathematical Sciences, 2017, 29(5):101-112. |
[1] | 刘春辉. Heyting代数的扩张模糊滤子[J]. 《山东大学学报(理学版)》, 2019, 54(2): 57-65. |
[2] | 乔虎生,石学勤. 弱挠自由Rees商序S-系的同调分类[J]. 山东大学学报(理学版), 2018, 53(8): 49-52. |
[3] | 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报(理学版), 2018, 53(6): 86-94. |
[4] | 刘春辉. 关于格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想[J]. 山东大学学报(理学版), 2018, 53(2): 65-72. |
[5] | 梁颖,崔艳丽,吴洪博. 基于BL系统的演绎系统集代数的剩余格属性[J]. 山东大学学报(理学版), 2017, 52(11): 65-70. |
[6] | 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110. |
[7] | 刘慧珍,辛小龙,王军涛. Monadic MV-代数上的微分[J]. 山东大学学报(理学版), 2016, 51(8): 53-60. |
[8] | 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107. |
[9] | 彭家寅. BL-代数的扰动模糊理想[J]. 山东大学学报(理学版), 2016, 51(10): 78-94. |
[10] | 周建仁, 吴洪博. IMTL逻辑系统的一种新扩张形式[J]. 山东大学学报(理学版), 2015, 50(12): 28-34. |
[11] | 薛丽霞, 李志慧, 谢佳丽. 对3条超边的超圈存取结构最优信息率的一点注记[J]. 山东大学学报(理学版), 2015, 50(11): 60-66. |
[12] | 刘卫锋. 布尔代数的软商布尔代数[J]. 山东大学学报(理学版), 2015, 50(08): 57-61. |
[13] | 张晓燕. 有限主理想环上接近MDR码[J]. 山东大学学报(理学版), 2015, 50(06): 59-63. |
[14] | 沈冲, 姚卫. 模糊完备格上模糊G-理想和模糊Galois伴随之间的一一对应[J]. 山东大学学报(理学版), 2015, 50(04): 36-41. |
[15] | 杨永伟, 贺鹏飞, 李毅君. BL-代数中的落影模糊理想[J]. 山东大学学报(理学版), 2015, 50(02): 83-89. |
|