您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 1-5.doi: 10.6040/j.issn.1671-9352.0.2019.697

• •    

C(E')系对幺半群的刻画

乔虎生,何利强*   

  1. 西北师范大学 数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2020-04-09
  • 作者简介:乔虎生(1974— ), 男, 教授, 博士生导师, 研究方向为半群代数理论. E-mail:gsqiaohsh@163.com*通信作者简介:何利强(1994— ), 男, 硕士研究生, 研究方向为半群代数理论. E-mail:heliqiang0985@163.com
  • 基金资助:
    国家自然科学基金资助项目(11961058);甘肃省高校基本科研业务费

Characterization of monoids by C(E')acts

QIAO Hu-sheng, HE Li-qiang*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-04-09

摘要: S是幺半群,S-系范畴中引入了C(E')系。通过对S-系中C(E')性质的讨论,研究了S-系的同调分类问题,主要刻画了P(E')幺半群的结构特征。

关键词: S-系, C(E')系, P(E')幺半群

Abstract: Let S be a monoid. C(E')right S-acts in the category of S-acts are introduced. By C(E')property of S-acts, homological classification problem of S-acts are investigated, and some important monoids, such as P(E')monoids are characterized.

Key words: S-acts, C(E')acts, P(E')monoids

中图分类号: 

  • O152.7
[1] HOWIE J M. An introduction to semigroup theory[M]. London: Academic Press, 1976.
[2] 刘仲奎, 乔虎生. 半群的S-系理论[M]. 北京:科学出版社, 2008. LIU Zhongkui, QIAO Husheng. Theory of S-acts of semigroups[M]. Beijing: Science Press, 2008.
[3] LIU Z K, AHSAN J. A generalization of regular left S-acts[J]. Northeast Math, 1997, 13(2):169-176.
[4] QIAO Husheng. Characterization of monoids by C(P)acts[J]. Journal of Mathematical Research and Exposition, 2004, 24(1):119-126.
[5] LIU Z K. A characterization of regular monoids by flatness of left acts[J]. Semigroup Forum, 1993, 46:85-89.
[6] BERTHTAUME P. The injective envelope of S-acts[J]. Canad Math, 1967, 10:261-273.
[7] BULMAN-FLEMING S. Flat and strong flat S-systems[J]. Comm Algebra, 1992, 20:2533-2567.
[8] NORMAK P. On equalizer-flat and pullback-flat acts[J]. Semigroup Forum, 1977, 13:229-237.
[1] 孙爽,刘红星. S-系包含图[J]. 《山东大学学报(理学版)》, 2019, 54(8): 121-126.
[2] 孔祥军,王蓓. 关于可乘拟恰当断面的好同余[J]. 《山东大学学报(理学版)》, 2018, 53(12): 1-3.
[3] 梁星亮,吴苏朋,任军. C(P')系对幺半群的刻画[J]. 山东大学学报(理学版), 2018, 53(10): 9-13.
[4] 邵勇. 半格序完全正则周期半群[J]. 山东大学学报(理学版), 2018, 53(10): 1-5.
[5] 王丹,王正攀. 用禁止子半群刻画带簇的一个真子簇[J]. 山东大学学报(理学版), 2018, 53(10): 6-8.
[6] 乔虎生,石学勤. 弱挠自由Rees商序S-系的同调分类[J]. 山东大学学报(理学版), 2018, 53(8): 49-52.
[7] 宫春梅,冯丽霞,任学明. 完全J *,~-单半群上的(*,~)-好同余[J]. 山东大学学报(理学版), 2018, 53(6): 11-16.
[8] 乔虎生,赵婷婷. 关于S-系的积[J]. 山东大学学报(理学版), 2018, 53(4): 16-19.
[9] 王守峰. 具有可乘逆断面的正则半群的λ-半直积[J]. 山东大学学报(理学版), 2018, 53(4): 20-23.
[10] 王永铎,马亚军. 单dual Rickart模[J]. 山东大学学报(理学版), 2017, 52(12): 5-9.
[11] 乔虎生,廖敏英. GP-凝聚幺半群[J]. 山东大学学报(理学版), 2017, 52(12): 1-4.
[12] 罗永贵. 半群W(n,r)的极大(正则)子半群[J]. 山东大学学报(理学版), 2017, 52(10): 7-11.
[13] 乔虎生,金文刚. 关于正则系是弱内射系的幺半群[J]. 山东大学学报(理学版), 2017, 52(10): 1-3.
[14] 王永铎,何健. 相对于理想的环的刻画[J]. 山东大学学报(理学版), 2017, 52(8): 81-84.
[15] 王守峰. 具有可乘逆断面的正则半群上的预同态和限制积[J]. 山东大学学报(理学版), 2017, 52(8): 90-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!