您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (8): 81-84.doi: 10.6040/j.issn.1671-9352.0.2016.432

• • 上一篇    下一篇

相对于理想的环的刻画

王永铎,何健*   

  1. 兰州理工大学理学院, 甘肃 兰州 730050
  • 收稿日期:2016-09-18 出版日期:2017-08-20 发布日期:2017-08-03
  • 通讯作者: 何健(1991— ),男,硕士生,研究方向为环与模范畴. E-mail:1498398619@qq.com E-mail:ydwang@lut.cn
  • 作者简介:王永铎(1974— ),男, 博士,教授,研究方向为环与模范畴. E-mail:ydwang@lut.cn
  • 基金资助:
    甘肃省自然科学基金资助项目(1310RJZA029);甘肃省高校基本科研业务费

Characterizations of rings relative to an ideal

WANG Yong-duo, HE Jian*   

  1. School of Science, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
  • Received:2016-09-18 Online:2017-08-20 Published:2017-08-03

摘要: 设I是环R的理想, 引入伪半投射I-盖的概念。 证明了每一个左R-模有伪半投射I-盖当且仅当每一个左R-模有投射I-盖, 并证明了伪半投射模构成的类是投射类, 进而推广了一些已有的结论。

关键词: 半完备环, 半正则环, 伪半投射摸, 投射类

Abstract: Let I be an ideal of a ring R. The concept of pseudo semiprojective I-covers is introduced. It is shown that every left R-module has a pseudo semiprojective I-cover if and only if every left R-module has a proj-ective I-cover. It is also proved that the class of all pseudo semiprojective modules is a projectivity class, and then some well known results are generalized.

Key words: semiregular ring, pseudo semiprojective module, semiperfect ring, projectivity class

中图分类号: 

  • O152.7
[1] QUYNH T C. On pseudo semi-projective modules[J]. Turkish Journal of Mathematics, 2013, 37(1):27-36.
[2] ALKAN M, NICHOLSON W K, OZCAN A C. A generalization of projective covers[J]. Journal of Algebra, 2008, 319:4947-4960.
[3] WANG Yongduo. Characterizations of I-semiregular and I-semiperfect rings[J/OL]. arXiv preprint arXiv: 1108.2083, 2011.
[4] WANG Dingguo. Rings characterized by projectivity classes[J]. Comm in Algebra, 1997, 25(1):105-116.
[5] KALEBOGAZ B, KESKIN D. A study on semi-projective covers, semi-projective modules and formal triangular matrix rings[J]. Palestine J Math, 2014, 3(1):374-382.
[6] ANDERSON B F W,FULLER K R. Rings and categories of modules[M]. New York: Springe-Verlag, 1974.
[7] ZHOU Yiqiang. Generalizations of perfect, semiperfect, and semiregular rings[J]. Algebra Colloq, 2000, 7(3):305-318.
[8] OZCAN A C, ALCAN M. Semiperfect modules with respect to a preradical[J]. Comm in Algebra, 2006, 34(3):841-856.
[9] NICHOLSON W K,YOUSIF M F. Quasi-frobenius rings[M]. Cambridge: Cambridge University Press, 2003.
[10] TUGANBAEV A. Rings close to regular[M]. Dordrecht: Kluwer Academic Publishers, 2002.
[11] WANG Yongduo, WU Dejun. A generalization of supplemented modules[J]. Hacettepe J Math and Stat, 2016, 45(1):129-137.
[12] KESKIN D,KURATOMI Y. On epi-projective modules[J]. East-West J Math, 2008, 10(1):27-35.
[13] FACCHINI A, SMERTNIG D, TUNG N K. Cyclically presented modules, projective covers and factorizations[M] // DV Huynh, SK Jain, SR Lpez-Permouth, et al. Proceedings volume in honor of TY Lam, Contemporary Math: Ring Theory and Its Applications. Providence, Rhode Island: American Mathematical Society, 2014, 609: 89-106.
[1] 邵勇. 半格序完全正则周期半群[J]. 山东大学学报(理学版), 2018, 53(10): 1-5.
[2] 王丹,王正攀. 用禁止子半群刻画带簇的一个真子簇[J]. 山东大学学报(理学版), 2018, 53(10): 6-8.
[3] 梁星亮,吴苏朋,任军. C(P')系对幺半群的刻画[J]. 山东大学学报(理学版), 2018, 53(10): 9-13.
[4] 乔虎生,石学勤. 弱挠自由Rees商序S-系的同调分类[J]. 山东大学学报(理学版), 2018, 53(8): 49-52.
[5] 宫春梅,冯丽霞,任学明. 完全J *,~-单半群上的(*,~)-好同余[J]. 山东大学学报(理学版), 2018, 53(6): 11-16.
[6] 乔虎生,赵婷婷. 关于S-系的积[J]. 山东大学学报(理学版), 2018, 53(4): 16-19.
[7] 王守峰. 具有可乘逆断面的正则半群的λ-半直积[J]. 山东大学学报(理学版), 2018, 53(4): 20-23.
[8] 乔虎生,廖敏英. GP-凝聚幺半群[J]. 山东大学学报(理学版), 2017, 52(12): 1-4.
[9] 王永铎,马亚军. 单dual Rickart模[J]. 山东大学学报(理学版), 2017, 52(12): 5-9.
[10] 乔虎生,金文刚. 关于正则系是弱内射系的幺半群[J]. 山东大学学报(理学版), 2017, 52(10): 1-3.
[11] 罗永贵. 半群W(n,r)的极大(正则)子半群[J]. 山东大学学报(理学版), 2017, 52(10): 7-11.
[12] 王守峰. 具有可乘逆断面的正则半群上的预同态和限制积[J]. 山东大学学报(理学版), 2017, 52(8): 90-93.
[13] 乔虎生,白永发. S-系对幺半群的刻画[J]. 山东大学学报(理学版), 2017, 52(2): 1-4.
[14] 李春华,徐保根,黄华伟. 真弱左型B半群上的幂单同余[J]. 山东大学学报(理学版), 2016, 51(8): 49-52.
[15] 文海存,乔虎生. 关于强平坦序左S-系是I-正则系的序幺半群[J]. 山东大学学报(理学版), 2016, 51(8): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!