您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (9): 96-110.doi: 10.6040/j.issn.1671-9352.0.2020.458

• • 上一篇    

等离子体模型ADI-FDTD格式的最大模误差估计及外推

李维智,李宛珊*,李建良   

  1. 南京理工大学理学院, 江苏 南京 210094
  • 发布日期:2021-09-13
  • 作者简介:李维智(1996— ),男,硕士研究生,研究方向为偏微分方程数值解. E-mail:1159303163@qq.com*通信作者简介:李宛珊(1988— ),女,博士,副教授,研究方向为偏微分方程数值解. E-mail:wsli@njust.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11701282)

Maximum norm error estimate and extrapolation of the ADI-FDTD scheme for plasma model

LI Wei-zhi, LI Wan-shan*, LI Jian-liang   

  1. School of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Published:2021-09-13

摘要: 在周期边界条件下,首先提出了求解二维等离子体麦克斯韦方程组的交替方向隐式时域有限差分(alternating direction implicit finite-difference time-domain, ADI-FDTD)格式,然后利用离散能量法,给出了该格式的先验估计,并由此证明了该格式在最大模意义下具有时空二阶收敛性。在此基础上,为了提高数值结果的精度,利用截断误差的渐近展开式对所提出的ADI-FDTD格式做Richardson外推,得到了时空四阶精度的算法。最后通过数值实验验证了理论结果。

关键词: 等离子体模型, ADI-FDTD, 先验估计, 最大模误差估计, 外推

Abstract: The ADI-FDTD scheme for solving the two-dimensional Maxwells equations in plasma media is proposed under periodical boundary conditions. A prior estimate of the proposed scheme is given by using the discrete energy method, and it is proved that the scheme is of second-order accuracy both in time and space in the sense of the maximum norm. In order to improve the accuracy of the numerical results, Richardson extrapolation is applied to the proposed ADI-FDTD scheme by using the asymptotic expansion of the truncation error, and we obtain the algorithm having fourth-order accuracy both in time and space. Finally, the theoretical results are verified by numerical experiments.

Key words: plasma model, ADI-FDTD, prior estimate, maximum norm error estimate, extrapolation

中图分类号: 

  • O241.82
[1] LI Jun, LIU Kou, YAN Shengjun, et al. Application of thermal plasma technology for the treatment of solid wastes in China: an overview[J]. Waste Management, 2016, 58:260-269.
[2] SAMAL S. Thermal plasma technology: the prospective future in material processing[J]. Journal of Cleaner Production, 2016, 142(4):3131-3150.
[3] DU Fei, HUANG Peilin, JI Jinzu. Study and optimization on the scattering characteristic of two-dimensional metal airfoil covered with plasma using ADE-FDTD[J]. Optik-International Journal for Light and Electron Optics, 2017, 147:224-231.
[4] PERNET S, FERRIERES X, COHEN G. High spatial order finite element method to solve Maxwells equations in time domain[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(9):2889-2899.
[5] LI Jichun, CHEN Yitung. Analysis of a time-domain finite element method for 3-D Maxwells equations in dispersive media[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195(33/34/35/36):4220-4229.
[6] YEE K S. Numerical solution of initial boundary value problems involving Maxwells equation in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3):302-307.
[7] NAMIKI T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE Transactions on Microwave Theory & Techniques, 1999, 47(10):2003-2007.
[8] SONG Wanjun, ZHANG Hou. Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma[J]. Journal of Computational Physics, 2017, 349:122-136.
[9] ZHAO Anping. A novel implementation for two-dimensional unconditionally stable FDTD method[J]. Microwave and Optical Technology Letters, 2003, 38(6):457-462.
[10] LEE J, FORNBERG B. A split step approach for the 3-D Maxwells equations[J]. Journal of Computational & Applied Mathematics, 2003, 158(2):485-505.
[11] SHIBAYAMA J, MURAKI M, YAMAUCHI J, et al. Efficient implicit FDTD algorithm based on locally one-dimensional scheme[J]. Electronics Letters, 2005, 41(19):1046-1047.
[12] NGUYEN D D, ZHAO S. High order FDTD methods for transverse magnetic modes with dispersive interfaces[J]. Applied Mathematics & Computation, 2014, 226:699-707.
[13] WANG Bo, SUN Tongjun, LIANG Dong. The conservative and fourth-order compact finite difference schemes for regularized long wave equation[J]. Journal of Computational & Applied Mathematics, 2019, 356:98-117.
[14] HIRONO T, LUI W, SEKI S, et al. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator[J]. IEEE Transactions on Microwave Theory & Techniques, 2001, 49(9):1640-1648.
[15] LIAO Honglin, SUN Zhizhong, SHI Hansheng. Error estimate of fourth-order compact scheme for linear Schrödinger equations[J]. SIAM Journal on Numerical Analysis, 2010, 47(6):4381-4401.
[16] LUO Zhendong, GAO Junqiang. A POD reduced-order finite difference time-domain extrapolating scheme for the 2D Maxwell equations in a lossy medium[J]. Journal of Mathematical Analysis & Applications, 2016, 444(1):433-451.
[17] JIA J T, SOGABE T, LI S M. A generalized symbolic Thomas algorithm for the solution of opposite-bordered tridiagonal linear systems[J]. Journal of Computational & Applied Mathematics, 2015, 290:423-432.
[18] GAO Liping. Stability and super convergence analysis of ADI-FDTD for the 2D Maxwell equations in a lossy medium[J]. Acta Mathematica Scientia, 2012, 32(6):2341-2368.
[19] LIAO Honglin, SUN Zhizhong. Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations[J]. Numerical Methods for Partial Differential Equations, 2010, 26(1):37-60.
[1] 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121.
[2] 董亚莹. 一类空间退化的捕食-食饵模型的全局分歧结构[J]. 山东大学学报(理学版), 2018, 53(4): 76-84.
[3] 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71.
[4] 张厚超, 朱维钧, 王俊俊. 非线性四阶双曲方程一个低阶混合元方法的超收敛和外推[J]. 山东大学学报(理学版), 2015, 50(12): 35-46.
[5] 王萍莉, 石东洋. Schrödinger方程双线性元的 超收敛分析和外推[J]. 山东大学学报(理学版), 2014, 49(10): 66-71.
[6] 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84.
[7] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65-71.
[8] 王芬玲1,石东伟2. 非线性双曲方程Hermite型矩形元的高精度分析[J]. J4, 2012, 47(10): 89-96.
[9] 牛裕琪1,王芬玲1,石东伟2. 非线性黏弹性方程双线性元解的高精度分析[J]. J4, 2011, 46(8): 31-37.
[10] 张路寅,张玉海,钱坤明. 关于不适定问题的迭代Tikhonov正则化方法[J]. J4, 2011, 46(4): 29-33.
[11] 罗平. 双重介质中地下水污染模型沿特征线外推的向后Euler-Galerkin 格式及交替方向预处理迭代解[J]. J4, 2011, 46(2): 70-77.
[12] 姜良站,李艳玲*. 一类具有常数避难所的捕食-食饵模型非常数正解的存在性[J]. J4, 2011, 46(2): 15-21.
[13] 钱凌志1, 顾海波2. 高阶紧致格式结合外推技巧求解对流扩散方程[J]. J4, 2011, 46(12): 39-43.
[14] 王娟1,刘辉昭2. 一类抛物型Monge-Ampère方程具Neumann边界条件的初边值问题[J]. J4, 2010, 45(6): 70-73.
[15] 别群益. 具避难所的捕食-食饵模型非常数正解的存在性[J]. J4, 2009, 44(3): 50-55 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!