《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 46-53.doi: 10.6040/j.issn.1671-9352.0.2020.521
• • 上一篇
孙博,殷玉洁,狄振兴*
SUN Bo, YIN Yu-jie, DI Zhen-xing*
摘要: 设Γ是一个n阶三角矩阵环,其中n≥2是一个整数。给出了一个Γ-模的子模是本质子模的等价刻画与一个Γ-模的基座具体形式。特别地,作为上述结论的运用,给出了一个Γ-模是有限嵌入模的充分必要条件。
中图分类号:
[1] HAGHANY A, VARADARAJAN K. Study of modules over formal triangular matrix rings[J]. J Pure Appl Algebra, 2000, 147:41-58. [2] WANG Ren. Gorenstein triangular matrix rings and category algebras[J]. J Pure Appl Algebra, 2016, 220:666-682. [3] HAGHANY A, VARADARAJAN K. Study of formal triangular matrix rings[J]. Comm Algebra, 1999, 27(11):5507-5525. [4] CHEN Huanyin. On the structure of triangular matrix rings[J]. Journal of Nanjing University(Mathematical Biquarterly), 1999, 16(2):153-157. [5] ANDERSON F W, FULLER Kent R. Rings and categories of modules[M]. 2nd ed. New York: Springer, 1992. [6] GOODEARL K R, WARFIELD R B. An introduction to non-commutative noetherian rings[M] //London Math Soc, Vol 16, Student Texts. New York: Springer, 1989. |
[1] | 陈玲巧,唐国亮,狄振兴. (强)Kasch n阶三角矩阵环的等价刻画[J]. 《山东大学学报(理学版)》, 2021, 56(4): 25-30. |
|