《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 56-63.doi: 10.6040/j.issn.1671-9352.0.2020.713
• • 上一篇
郭凯利,冯晓晶*
GUO Kai-li, FENG Xiao-jing*
摘要: 研究了一类带有临界项的分数阶薛定谔-泊松系统,这类系统广泛地应用于优化、金融、反应扩散等领域。由于系统中的薛定谔方程具有双临界项,因此困难之处在于估计山路临界值,且位势函数既不是周期的也不是渐近周期的,故不能运用通常的集中紧性原理,因此通过使用变分方法和改进的集中紧性原理,得到了该系统非平凡解的存在性。补充和推广了以往分数阶薛定谔-泊松系统的相关结果。
中图分类号:
[1] CHANG Xiaojun, WANG Zhiqiang. Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian[J]. Journal of Differential Equations, 2014, 256(8):2965-2992. [2] FELMER P, QUAAS A, TAN J G. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian[J]. Proceedings of Royal Society of Edinburgh, 2012, 142(6):1237-1262. [3] KHOUTIR S, CHEN H B. Existence of infinitely many high energy solutions for a fractional Schrödinger equation in RN[J]. Applied Mathematics Letters, 2016, 61:156-162. [4] LIU Zhisu, GUO Shangjiang. On ground state solutions for the Schrödinger-Poisson equations with critical growth[J]. Journal of Mathematical Analysis and Applications, 2014, 412(1):435-448. [5] ZHANG Jian. Ground state and multiple solutions for Schrödinger-Poisson equations with critical nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2016, 440(2):466-482. [6] ZHANG Xu, MA Shiwang, XIE Qilin. Bound state solutions of Schrödinger-Poisson system with critical exponent[J]. Discrete and Continuous Dynamical Systems, 2017, 37(1):605-625. [7] GAO Zu, TANG Xianhua, CHEN Sitong. Existence of ground state solutions of Nehari-Pohozaev type for fractional Schrödinger-Poisson systems with a general potential[J]. Computers and Mathematics with Applications, 2018, 75(2):614-631. [8] TENG Kaimin. Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent[J]. Journal of Differential Equations, 2016, 261(6):3061-3106. [9] GU Guangze, TANG Xianhua, ZHANG Youpei. Existence of positive solutions for a class of critical fractional Schrödinger-Poisson system with potential vanishing at infinity[J]. Applied Mathematics Letters, 2020, 99:105984. [10] ZHANG J J, MARCOS M, SQUASSINA M. Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity[J]. Advanced Nonlinear Studies, 2016, 16(1):15-30. [11] LUO Haijun, ZHANG Zhitao. Normalized solutions to the Schrödinger-Poisson equations with combined nonlinearities[J]. Calculus of Variations, 2020, 59:143. [12] FENG Xiaojing. Ground state solutions for Schrödinger-Poisson systems involving the fractional Laplacian with critical exponent[J]. Journal of Mathematical Physics, 2019, 60(5):051511. [13] FENG Xiaojing, YANG Xia. Existence of ground state solution for fractional Schrödinger-Poisson systems with double critical growth[J]. Mediterranean Journal of Mathematics, 2021,18(2):41. [14] LIU Z S, SQUASSINAS M, ZHANG J J. Ground state solutions for fractional Kirchhoff equations with critical nonlinearity in low dimension[J]. Nonlinear Differential Equations and Applications, 2017, 24(4):50. |
[1] | 姜瑞廷,翟成波. 带有Rellich位势的临界双调和方程解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 42-46. |
[2] | 王培婷,李安然,魏重庆. 下临界Choquard型线性耦合系统基态解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 62-67. |
[3] | 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35. |
[4] | 马燕, 张克玉. 分数阶微分方程边值问题非平凡解的存在性[J]. 山东大学学报(理学版), 2015, 50(05): 68-73. |
[5] | 伍芸1,2, 韩亚蝶1. 一类临界位势非线性椭圆型方程非平凡解的存在性[J]. J4, 2013, 48(4): 91-94. |
|