您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 56-63.doi: 10.6040/j.issn.1671-9352.0.2020.713

• • 上一篇    

具有临界项的分数阶薛定谔-泊松系统的解

郭凯利,冯晓晶*   

  1. 山西大学数学科学学院, 山西 太原 030006
  • 发布日期:2021-06-03
  • 作者简介:郭凯利(1999— ),女,硕士研究生,研究方向为非线性泛函分析. E-mail:201922201003@email.sxu.edu.cn*通信作者简介:冯晓晶(1981— ),男,博士,副教授,研究方向为非线性泛函分析和偏微分方程. E-mail:fengxj@sxu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12026218,12071266);山西省自然科学基金资助项目(201801D121002)

Solution to the fractional Schrödinger-Poisson systems with critical term

GUO Kai-li, FENG Xiao-jing*   

  1. School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
  • Published:2021-06-03

摘要: 研究了一类带有临界项的分数阶薛定谔-泊松系统,这类系统广泛地应用于优化、金融、反应扩散等领域。由于系统中的薛定谔方程具有双临界项,因此困难之处在于估计山路临界值,且位势函数既不是周期的也不是渐近周期的,故不能运用通常的集中紧性原理,因此通过使用变分方法和改进的集中紧性原理,得到了该系统非平凡解的存在性。补充和推广了以往分数阶薛定谔-泊松系统的相关结果。

关键词: 分数阶薛定谔-泊松系统, 非平凡解, 临界指数

Abstract: This paper studies a class of fractional Schrödinger-Poisson systems with critical term, which has recently been widely used in optimization, finance, reaction diffusion and so on. Since the problem in the system has two critical terms, it is difficult to estimate the critical value of mountain pass; and the potential function is neither periodic nor asymptotic periodic, the usual concentration-compactness method is invalid. So we employ variational method and modified concentration-compactness principle to obtain the existence of nontrivial solution of this system. This result supplements and expands on the previous results on fractional Schrödinger-Poisson systems.

Key words: fractional Schrö, dinger-Poisson system, nontrivial solution, critical exponent

中图分类号: 

  • O175.25
[1] CHANG Xiaojun, WANG Zhiqiang. Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian[J]. Journal of Differential Equations, 2014, 256(8):2965-2992.
[2] FELMER P, QUAAS A, TAN J G. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian[J]. Proceedings of Royal Society of Edinburgh, 2012, 142(6):1237-1262.
[3] KHOUTIR S, CHEN H B. Existence of infinitely many high energy solutions for a fractional Schrödinger equation in RN[J]. Applied Mathematics Letters, 2016, 61:156-162.
[4] LIU Zhisu, GUO Shangjiang. On ground state solutions for the Schrödinger-Poisson equations with critical growth[J]. Journal of Mathematical Analysis and Applications, 2014, 412(1):435-448.
[5] ZHANG Jian. Ground state and multiple solutions for Schrödinger-Poisson equations with critical nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2016, 440(2):466-482.
[6] ZHANG Xu, MA Shiwang, XIE Qilin. Bound state solutions of Schrödinger-Poisson system with critical exponent[J]. Discrete and Continuous Dynamical Systems, 2017, 37(1):605-625.
[7] GAO Zu, TANG Xianhua, CHEN Sitong. Existence of ground state solutions of Nehari-Pohozaev type for fractional Schrödinger-Poisson systems with a general potential[J]. Computers and Mathematics with Applications, 2018, 75(2):614-631.
[8] TENG Kaimin. Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent[J]. Journal of Differential Equations, 2016, 261(6):3061-3106.
[9] GU Guangze, TANG Xianhua, ZHANG Youpei. Existence of positive solutions for a class of critical fractional Schrödinger-Poisson system with potential vanishing at infinity[J]. Applied Mathematics Letters, 2020, 99:105984.
[10] ZHANG J J, MARCOS M, SQUASSINA M. Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity[J]. Advanced Nonlinear Studies, 2016, 16(1):15-30.
[11] LUO Haijun, ZHANG Zhitao. Normalized solutions to the Schrödinger-Poisson equations with combined nonlinearities[J]. Calculus of Variations, 2020, 59:143.
[12] FENG Xiaojing. Ground state solutions for Schrödinger-Poisson systems involving the fractional Laplacian with critical exponent[J]. Journal of Mathematical Physics, 2019, 60(5):051511.
[13] FENG Xiaojing, YANG Xia. Existence of ground state solution for fractional Schrödinger-Poisson systems with double critical growth[J]. Mediterranean Journal of Mathematics, 2021,18(2):41.
[14] LIU Z S, SQUASSINAS M, ZHANG J J. Ground state solutions for fractional Kirchhoff equations with critical nonlinearity in low dimension[J]. Nonlinear Differential Equations and Applications, 2017, 24(4):50.
[1] 姜瑞廷,翟成波. 带有Rellich位势的临界双调和方程解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 42-46.
[2] 王培婷,李安然,魏重庆. 下临界Choquard型线性耦合系统基态解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 62-67.
[3] 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35.
[4] 马燕, 张克玉. 分数阶微分方程边值问题非平凡解的存在性[J]. 山东大学学报(理学版), 2015, 50(05): 68-73.
[5] 伍芸1,2, 韩亚蝶1. 一类临界位势非线性椭圆型方程非平凡解的存在性[J]. J4, 2013, 48(4): 91-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!