《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (2): 23-30.doi: 10.6040/j.issn.1671-9352.0.2021.506
• • 上一篇
刘妍平
LIU Yan-ping
摘要: 研究关于(L,A)- Gorenstein投射模和(L,A)- Gorenstein内射模的相对导出范畴,其中(L,A)是一给定的完备对偶对,得到了相对导出范畴的三角等价和相对导出范畴的态射刻画。同时讨论了一类广义Tate上同调及其性质,得到了Avramov-Martsinkovsky型正合序列。
中图分类号:
[1] GROTHENDIECK A. The cohomology theory of abstract algebraic varieties[M]. New York: Cambridge University Press, 1960. [2] VERDIER J L. Catégories dérivées, état 0[M] //Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1977. [3] GAO Nan, ZHANG Pu. Gorenstein derived categories[J]. Journal of Algebra, 2010, 323(7): 2041-2057. [4] DING Nanqing, MAO Lixin. Gorenstein FP-injective and Gorenstein flat modules[J]. Journal of Algebra and Its Applications, 2008, 7(4): 491-506. [5] DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein flat modules[J]. Journal of the Australian Mathematical Society, 2009, 86(3): 323-338. [6] GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology, Homotopy and Applications, 2010,12(1): 61-73. [7] YANG Gang. Homological properties of modules over Ding-Chen rings[J]. Journal of the Korean Mathematical Society, 2012, 49(1): 31-47. [8] YANG Gang, LIU Zhongkui, LIANG Li. Ding projective and Ding injective modules[J]. Algebra Colloquium, 2013, 20(4): 601-612. [9] ZHANG Chunxia, LIU Zhongkui. Rings with finite Ding homological dimensions[J]. Turkish Journal of Mathematics, 2015, 39(1): 37-48. [10] REN Wei, LIU Zhongkui, YANG Gang. Derived categories with respect to Ding modules[J]. Journal of Algebra and Its Applications, 2013, 12(6): 1-14. [11] HOLM H, JORGENSEN P. Cotorsion pairs induced by duality pairs[J]. Journal of Commutative Algebra, 2009, 1(4): 621-633. [12] GILLESPIE J. Duality pairs and stable module categories[J]. Journal of Pure and Applied Algebra, 2019, 223(8): 3425-3435. [13] BUCHWEITZ R O. Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings[M]. Hannover: Leibniz University Hannover, 1986. [14] FARRELL F T. An extension of Tate cohomology to infinite groups[J]. Journal of Pure and Applied Algebra, 1977, 10(2): 153-161. [15] BENSON D J, CARLSON J F. Products in negative cohomology[J]. Journal of Pure and Applied Algebra, 1992, 82(2): 107-129. [16] MISLIN G. Tate cohomology for arbitrary groups via satellites[J]. Topology and Its Applications, 1994, 56(3): 293-300. [17] AVRAMOV L L, MARTSINKOVSKY A. Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension[J]. Proceedings of the London Mathematical Society, 2002, 85(2): 393-440. [18] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Tate cohomology with respect to semidualizing modules[J]. Journal of Algebra, 2010, 324(9): 2336-2368. [19] IACOB A. Generalized Tate cohomology[J]. Tsukuba Journal of Mathematics, 2005, 29(2): 389-404. [20] IACOB A. Balance in generalized Tate cohomology[J]. Communications in Algebra, 2005, 33(6): 2009-2024. [21] NEEMAN A. The derived category of an exact category[J]. Journal of Algebra, 1990, 135(2): 388-394. [22] CHRISTENSEN L W, FRANKILD A, HOLM H. On Gorenstein projective, injective and flat dimensions: a functorial description with applications[J]. Journal of Algebra, 2006, 302(1): 231-279. [23] GELFAND S I, MANIN Y I. Methods of homological algebra[M]. Berlin: Springer-Verlag, 2003. |
[1] | 谭玲玲,黄云涛,赵体伟. T2-扩张代数的Tate上同调[J]. 《山东大学学报(理学版)》, 2021, 56(1): 1-9. |
[2] | 赵俊秀,狄蓉蓉,狄振兴. n-IFP-分次内射模和n-IFP-分次平坦模[J]. 《山东大学学报(理学版)》, 2020, 55(2): 99-103. |
|