您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (2): 23-30.doi: 10.6040/j.issn.1671-9352.0.2021.506

• • 上一篇    

关于对偶对的相对导出范畴

刘妍平   

  1. 西北师范大学经济学院, 甘肃 兰州 730070
  • 发布日期:2022-01-07
  • 作者简介:刘妍平(1989— ),女,博士,副教授,研究方向为环的同调理论. E-mail:xbsdlyp@163.com
  • 基金资助:
    国家自然科学基金资助项目(11861055);甘肃省教育厅创新基金项目(2021A-002)

Relative derived category with respect to a duality pair

LIU Yan-ping   

  1. College of Economics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2022-01-07

摘要: 研究关于(L,A)- Gorenstein投射模和(L,A)- Gorenstein内射模的相对导出范畴,其中(L,A)是一给定的完备对偶对,得到了相对导出范畴的三角等价和相对导出范畴的态射刻画。同时讨论了一类广义Tate上同调及其性质,得到了Avramov-Martsinkovsky型正合序列。

关键词: 对偶对, 相对导出范畴, Tate上同调, Avramov-Martsinkovsky型正合序列

Abstract: The relative derived categories with respect to Gorenstein(L,A)-projective and Gorenstein(L,A)-injective modules are introduced, where(L,A)is a fixed complete duality pair. A triangle-equivalence and description of morphisms in such relative derived categories are given. We also discuss a generalized Tate cohomology and obtain Avramov-Martsinkovsky exact sequences.

Key words: duality pair, relative derived category, Tate cohomology, Avramov-Martsinkovsky exact sequence

中图分类号: 

  • O153.3
[1] GROTHENDIECK A. The cohomology theory of abstract algebraic varieties[M]. New York: Cambridge University Press, 1960.
[2] VERDIER J L. Catégories dérivées, état 0[M] //Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1977.
[3] GAO Nan, ZHANG Pu. Gorenstein derived categories[J]. Journal of Algebra, 2010, 323(7): 2041-2057.
[4] DING Nanqing, MAO Lixin. Gorenstein FP-injective and Gorenstein flat modules[J]. Journal of Algebra and Its Applications, 2008, 7(4): 491-506.
[5] DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein flat modules[J]. Journal of the Australian Mathematical Society, 2009, 86(3): 323-338.
[6] GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology, Homotopy and Applications, 2010,12(1): 61-73.
[7] YANG Gang. Homological properties of modules over Ding-Chen rings[J]. Journal of the Korean Mathematical Society, 2012, 49(1): 31-47.
[8] YANG Gang, LIU Zhongkui, LIANG Li. Ding projective and Ding injective modules[J]. Algebra Colloquium, 2013, 20(4): 601-612.
[9] ZHANG Chunxia, LIU Zhongkui. Rings with finite Ding homological dimensions[J]. Turkish Journal of Mathematics, 2015, 39(1): 37-48.
[10] REN Wei, LIU Zhongkui, YANG Gang. Derived categories with respect to Ding modules[J]. Journal of Algebra and Its Applications, 2013, 12(6): 1-14.
[11] HOLM H, JORGENSEN P. Cotorsion pairs induced by duality pairs[J]. Journal of Commutative Algebra, 2009, 1(4): 621-633.
[12] GILLESPIE J. Duality pairs and stable module categories[J]. Journal of Pure and Applied Algebra, 2019, 223(8): 3425-3435.
[13] BUCHWEITZ R O. Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings[M]. Hannover: Leibniz University Hannover, 1986.
[14] FARRELL F T. An extension of Tate cohomology to infinite groups[J]. Journal of Pure and Applied Algebra, 1977, 10(2): 153-161.
[15] BENSON D J, CARLSON J F. Products in negative cohomology[J]. Journal of Pure and Applied Algebra, 1992, 82(2): 107-129.
[16] MISLIN G. Tate cohomology for arbitrary groups via satellites[J]. Topology and Its Applications, 1994, 56(3): 293-300.
[17] AVRAMOV L L, MARTSINKOVSKY A. Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension[J]. Proceedings of the London Mathematical Society, 2002, 85(2): 393-440.
[18] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Tate cohomology with respect to semidualizing modules[J]. Journal of Algebra, 2010, 324(9): 2336-2368.
[19] IACOB A. Generalized Tate cohomology[J]. Tsukuba Journal of Mathematics, 2005, 29(2): 389-404.
[20] IACOB A. Balance in generalized Tate cohomology[J]. Communications in Algebra, 2005, 33(6): 2009-2024.
[21] NEEMAN A. The derived category of an exact category[J]. Journal of Algebra, 1990, 135(2): 388-394.
[22] CHRISTENSEN L W, FRANKILD A, HOLM H. On Gorenstein projective, injective and flat dimensions: a functorial description with applications[J]. Journal of Algebra, 2006, 302(1): 231-279.
[23] GELFAND S I, MANIN Y I. Methods of homological algebra[M]. Berlin: Springer-Verlag, 2003.
[1] 谭玲玲,黄云涛,赵体伟. T2-扩张代数的Tate上同调[J]. 《山东大学学报(理学版)》, 2021, 56(1): 1-9.
[2] 赵俊秀,狄蓉蓉,狄振兴. n-IFP-分次内射模和n-IFP-分次平坦模[J]. 《山东大学学报(理学版)》, 2020, 55(2): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!