《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (1): 25-30.doi: 10.6040/j.issn.1671-9352.0.2021.798
• • 上一篇
黄琴梅,寇俊克*
HUANG Qin-mei, KOU Jun-ke*
摘要: 针对带混合噪声回归估计问题,利用小波方法构造线性小波估计器,并在不假定待估回归函数具备任何光滑性的前提下,证明小波估计器的Lp(1≤p<∞)相合性。
中图分类号:
[1] CHESNEAU C, EI KOLEI S, KOU J, et al. Nonparametric estimation in a regression model with additive and multiplicative noise[J]. Journal of Computational and Applied Mathematics, 2020, 380:112971. [2] DELAIGLE A, MEISTER A. Nonparametric regression estimation in the heteroscedastic errors-in-variables problem[J]. Journal of the American Statistical Association, 2007, 102(480):1416-1426. [3] CHEN Zhiyong, WANG Haibin, WANG Xunjun. The consistency for the estimator of nonparametric regression model based on martingale difference errors[J]. Statistical Papers, 2016, 57(2):451-469. [4] CHESNEAU C, NAVARRO F. On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator[J]. Communications in Statistics-Theory and Methods, 2017, 46(11):5643-5655. [5] CHICHIGNOUD M. Minimax and minimax adaptive estimation in multiplicative regression: locally Bayesian approach[J]. Probability Theory and Related Fields, 2012, 153(3):543-586. [6] CHAUBEY Y P, CHESNEAU C, DOOSTI H. Adaptive wavelet estimation of a density from mixtures under multiplicative censoring[J]. Statistics, 2015, 49(3):638-659. [7] YANG Yujiao, XU Yuhang, SONG Qiongxia. Spline confidence bands for variance functions in nonparametric time series regressive models[J]. Journal of Nonparametric Statistics, 2012, 24(3):699-714. [8] COMTE F, GENON-CATALOT V. Regression function estimation on non compact support in an heteroscesdastic model[J]. Metrika, 2020, 83(1):93-128. [9] CHESNEAU C, KOU Junke, NAVARRO F. Linear wavelet estimation in regression with additive and multiplicative noise[C] // Nonparametric Statistics, [S.l.] : Springer, Cham, 2020, 339:135-144. [10] DAUBECHIES I. Ten lecture on wavelets[M]. Philadelphia: SIAM, 1992: 120-210. [11] HÄRDLE W, KERKYACHARIAN G, PICARD D, et al. Wavelets, approximation and statistical applications[M]. New York: Springer, 1998: 97-120. [12] GENG Zijuan, WANG Jinru. The mean consistency of wavelet density estimators[J]. Journal of Inequalities and Applications, 2015, 111:1-14. |
[1] | 严晨旭,邵海见,邓星. 基于YOLOv3模型的高阶目标检测方法[J]. 《山东大学学报(理学版)》, 2022, 57(3): 20-30. |
[2] | 曹凯凯. 各向异性密度函数的小波估计[J]. 《山东大学学报(理学版)》, 2019, 54(6): 99-105. |
[3] | 盖晓华,郭学军,冯金顺,陈清江,程正兴. 高维小波框架包子空间对空间L2(Rn)的分解[J]. 山东大学学报(理学版), 2018, 53(8): 34-42. |
[4] | 李永明,聂彩玲,刘超,郭建华. 负超可加阵列下非参数回归函数估计的相合性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 69-74. |
[5] | 马霞,姚美萍. 汉坦病毒传播模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 48-52. |
[6] | 胡学平,张红梅. WOD样本下密度函数核估计的收敛性[J]. 山东大学学报(理学版), 2017, 52(4): 21-25. |
[7] | 李永明,邓绍坚,蒋伟红. END样本下递归密度函数估计的相合性[J]. 山东大学学报(理学版), 2017, 52(11): 54-59. |
[8] | 武大勇, 李锋. 随机缺失下半参数回归模型的最大经验似然估计[J]. 山东大学学报(理学版), 2015, 50(04): 20-23. |
[9] | 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74. |
[10] | 伍欣叶,吴群英. 混合删失模型中密度函数K-M估计的r-阶相合速度[J]. 山东大学学报(理学版), 2014, 49(1): 105-110. |
[11] | 崔若飞,卢丽倩,周伟伟,李文昊,韩庆宇,高远金,李增勇*. 基于近红外光谱的脑氧参量与血压信号的#br# 小波交叉谱分析[J]. 山东大学学报(理学版), 2014, 49(1): 39-43. |
[12] | 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83-88. |
[13] | 叶彩园,吴群英*,伍欣叶. 删失数据下NA样本核密度估计的相合性[J]. J4, 2013, 48(09): 40-45. |
[14] | 银俊成1,2,曹怀信1. Hilbert 空间L2(R)上的小波保持子[J]. J4, 2012, 47(4): 57-61. |
[15] | 耿万海,陈一鸣,刘玉风,汪晓娟. 应用Haar小波和算子矩阵求定积分的近似值[J]. J4, 2012, 47(4): 84-88. |
|