您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 1-6.doi: 10.6040/j.issn.1671-9352.0.2022.227

• •    下一篇

τq-PF环

张晓磊1,齐薇1,夏伟恒2   

  1. 1.山东理工大学数学与统计学院, 山东 淄博 255000;2.四川师范大学数学科学学院, 四川 成都 610066
  • 发布日期:2023-03-02
  • 作者简介:张晓磊(1986— ),男,讲师,博士,研究方向为交换代数与同调代数. E-mail:zxlrghj@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061001);国家自然科学青年基金资助项目(12201361)

τq-PF Rings

ZHANG Xiao-lei1, QI Wei1, XIA Wei-heng2   

  1. 1. School of Mathematics and Statistics, Shandong University of Technology, Zibo 255000, Shandong, China;
    2. School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, Sichuan
  • Published:2023-03-02

摘要: 通过局部化角度刻画了τq-PF环。其次,引入并研究了τq-P-平坦模并证明环Rτq-PF环当且仅当任意(主)理想是τq-P-平坦模。最后,从环的有限直积和合并代数角度研究了τq-PF环。此外,给出一些例子区分τq-PF环和PF环。

关键词: τq-PF环, τq-P-平坦模, PF环, 合并代数

Abstract: The notion of τq-P-flat modules is introduced and studied. Specially, a ring R is τq-PF if and only if any(principal)ideal of R is τq-P-flat. Finally, τq-PF rings are also studied in terms of finite direct products of rings and amalgamation algebras. By the way, some examples are given to distinguish τq-PF rings and PF rings.

Key words: τq-PF ring, τq-P-flat module, PF ring, amalgamation algebra

中图分类号: 

  • O154.2
[1] GLAZ S. Commutative coherent rings[M] // Lecture Notes in Mathematics, Vol 1371, Berlin: Spring-Verlag, 1989.
[2] GLAZ S. Controlling the zero divisors of a commutative ring[M] // Commutative Ring Theory and Applications(Fez, 2001), Volume 231 of Lecture Notes in Pure and Appl Math. New York: Marcel Dekker Inc, 2003: 191-212.
[3] CHENIOUR F, MAHDOU N. When every principal ideal is flat[J].Portugaliae Math, 2011, 70:51-58.
[4] WANG Fanggui, MCCASLAND R L. On w-modules over strong moridomains[J]. Commun Algebra,1997, 25(4):1285-1306.
[5] YIN Huayu, WANG Fanggui, ZHU Xiaosheng, et al. w-modules over commutative rings[J].J Korean Math Soc, 2011, 48(1):207-222.
[6] WANG Fanggui, KIM H. w-injective modules and w-semi-hereditary rings[J]. J Korean Math Soc, 2014, 51:509-525.
[7] WANG Fanggui, QIAO Lei. The w-weak global dimension of commutative rings[J]. Bull Korean Math Soc, 2015, 52(4):1327-1338.
[8] 夏伟恒,乔磊,宋菲菲.交换环上的w-P-平坦模及其应用[J].吉林大学学报(理学版), 2022, 60(2):269-276. XIA Weiheng, QIAO Lei, SONG Feifei. w-P-flat modules over commutative rings and their applications[J]. Journal of Jilin University(Science Edition), 2022, 60(2):269-276.
[9] WANG Fanggui, ZHOU Dechuan, CHEN Dan. Module-theoretic characterizations of the ring of finite fractions of acommutative ring[J]. J Commut Algebra, 2022, 14(1):141-154.
[10] WANG Fanggui, ZHOU Dechuan, KIM H, et al. Every Prüfer ring does not have small finitistic dimension at most one[J].Comm Algebra, 2020, 48(12):5311-5320.
[11] CAHEN P J, FONTANA M, FRISCH S, et al. Open problems in commutative ring theory[M] //FONTANA M, FRISCH S, GLAZ S, eds. Commutative Algebra. New York: Springer, 2014.
[12] ZHOU Dechuan, KIM H, WANG Fanggui, et al. A new semistar operation on a commutative ring and its applications[J]. Comm Algebra, 2020, 48(9):3973-3988.
[13] ZHANG Xiaolei. On τq-flatness and τq-coherence[J/OL]. https://arxiv.org/abs/2111.03417.
[14] ZHANG Xiaolei, WANG Fanggui. The small finitistic dimensions over commutative rings[J/OL]. J Commut Algebra, https://arxiv.org/abs/2103.08807.
[15] HATTORI A. A foundation of torsion theory for modules over general rings[J]. Nagoya Math J, 1960, 17:147-158.
[16] WANG Fanggui, KIM H. Foundations of commutative rings and their modules[M]. Singapore: Springer, 2016.
[17] FUCHS L, SALCE L. Modules over non-Noetherian domains[M]. Providence: AMS, 2001.
[18] ZHANG Xiaolei. A homological characterization of Q0-Prüfer v-multiplication rings[J]. Int Electron J Algebra, 2022, 32:228-240.
[19] 李珊珊. P-平坦模,P-内射模和某些环[D]. 成都:四川师范大学, 2005. LI Shanshan. P-fat modules, P-injective modules and some rings[D]. Chengdu: Sichuan Normal University, 2005.
[20] COUCHOT F. Flat modules over valuation rings[J]. J Pure Appl Algebra, 2007, 211(1):235-247.
[21] D'ANNA M. A construction of Gorenstein rings[J]. J Algebra, 2006, 306:507-519.
[22] D'ANNA M, FONTANA M. An amalgamated duplication of a ring along a multiplicative-canonicali deal[J]. Arkiv Mat, 2007, 6:241-252.
[1] 唐国亮,陈玲巧,狄振兴. 强右极小内射, semiperfect, 右 PF, clean n阶三角矩阵环的等价刻画[J]. 《山东大学学报(理学版)》, 2022, 57(2): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!