您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (2): 8-13.doi: 10.6040/j.issn.1671-9352.0.2021.055

• • 上一篇    

强右极小内射, semiperfect, 右 PF, clean n阶三角矩阵环的等价刻画

唐国亮,陈玲巧,狄振兴*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2022-01-07
  • 作者简介:唐国亮(1997— ),男,硕士研究生,研究方向为环的同调理论. E-mail:tangguoliang970125@163.com*通信作者简介:狄振兴(1984— ),男,博士,副教授,博士生导师,研究方向为环的同调理论与代数表示论. E-mail:dizhenxing19841111@126.com
  • 基金资助:
    国家自然科学基金资助项目(11971388)

Equivalent characterizations of strong right mininjective, semiperfect, right PF and clean triangular matrix rings of order n

TANG Guo-liang, CHEN Ling-qiao, DI Zhen-xing*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2022-01-07

摘要: 设n是任意取定的正整数,给出了强右极小内射, semiperfect, 右PF, clean n阶三角矩阵环的等价刻画。

关键词: n阶三角矩阵环, 强右极小内射环, semiperfect环, 右PF环, clean环

Abstract: Let n be a given positive integer. The equivalent characterizations of strong right mininjective, semiperfect, right PF and clean triangular matrix rings of order n are given.

Key words: triangular matrix rings of order n, strong right mininjective rings, semiperfect rings, right PF rings, clean rings

中图分类号: 

  • O153.3
[1] HERSTEIN I N. A counter example in Noetherian rings[J]. Proc Nat Acad Sci, 1965, 54:1036-1037.
[2] HAGHANG A, VARADARAJAN K. Study of formal triangular matrix rings[J]. Comm Algrbra, 1999, 27(11):5507-5525.
[3] HAGHANG A, VARADARAJAN K. Study of modules over formal triangular matrix rings[J]. J Pure Appl Algebra, 2000, 147(1):41-58.
[4] WANG Ren. Gorenstein triangular matrix rings and category algebras[J]. J Pure Appl Algebra, 2016, 220(2):666-682.
[5] HARADA M. Self mini-injective rings[J]. Osaka Math J, 1982, 19(3):587-597.
[6] NICHOLSON W K, YOUSIF M F. Mininjective rings[J]. J Algebra, 1997, 187(2):548-578.
[7] NICHOLSON W K, YOUSIF M F. Quasi-Frobenius rings[M]. Cambridge: Cambridge University Press, 2003.
[8] DUNG B D, THOANG L D, SANH N V. When is a semiperfect ring right PF[J]. Asian-Eur J Math, 2008, 1(3):353-358.
[9] NICHOLSON W K. Lifting idempotents and exchange rings[J]. Trans Amer Math Soc, 1977, 229:269-278.
[10] MCGOVERN W W. Neat rings[J]. J Pure Appl Algebra, 2006, 205(2):243-265.
[11] ANDERSON F W, FULLER K R. Ring and categories of modules[M]. 2nd ed. New York: Springer-Verlag, 1992.
[12] NICHOLSON W K. An elementary proof of a characterization of semiperfect rings[J]. New Zealand J Math, 1996, 25(2):195-197.
[13] KASCH F. Modules and rings[M]. New York: Academic Press, 1982.
[14] NICHOLSON W K, VARADARAJAN K. Countable linear transformations are clean[J]. Proc Amer Math Soc, 1998, 126(1):61-64.
[1] 孙博,殷玉洁,狄振兴. n阶三角矩阵环上的有限嵌入模[J]. 《山东大学学报(理学版)》, 2021, 56(4): 46-53.
[2] 陈玲巧,唐国亮,狄振兴. (强)Kasch n阶三角矩阵环的等价刻画[J]. 《山东大学学报(理学版)》, 2021, 56(4): 25-30.
[3] 刘松松,吴俊. 强g(x)-J#-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(8): 20-27.
[4] 郑纪文,程智. (强)J-*-三幂等-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(8): 13-19.
[5] 孙晓青,肖燕婷,崔冉冉. 关于环的Q-clean性及Q-clean corner的讨论[J]. 《山东大学学报(理学版)》, 2020, 55(2): 79-83.
[6] 徐莹莹,殷晓斌. JGR-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(2): 84-90.
[7] 陈怡宁,秦龙. g(x)-诣零clean环[J]. 《山东大学学报(理学版)》, 2019, 54(6): 41-46.
[8] 高汉鹏,殷晓斌. g(x)-J-Clean环[J]. 山东大学学报(理学版), 2017, 52(2): 24-29.
[9] 汪慧星,崔建,陈怡宁. 诣零*-clean环[J]. 山东大学学报(理学版), 2017, 52(12): 16-24.
[10] 张子珩,储茂权,殷晓斌. GWCN环的若干性质[J]. 山东大学学报(理学版), 2016, 51(12): 10-16.
[11] 王秀兰. 半布尔群环[J]. J4, 2012, 47(10): 18-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!