您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (8): 20-27.doi: 10.6040/j.issn.1671-9352.0.2019.440

• • 上一篇    

强g(x)-J#-clean环

刘松松,吴俊*   

  1. 安徽师范大学数学与统计学院, 安徽 芜湖 241003
  • 发布日期:2020-07-14
  • 作者简介:刘松松(1994— ), 男, 硕士研究生,研究方向为环论. E-mail:626843841@qq.com *通信作者简介: 吴俊(1964— ),男,博士,教授,研究方向为环论. E-mail:junwu@mail.ahnu.edu.cn
  • 基金资助:
    安徽省高校自然科学重点基金项目(KJ2019A0488);安徽师范大学博士启动基金和项目培育基金项目(2014xmpy11)

Strongly g(x)-J#-clean rings

LIU Song-song, WU Jun*   

  1. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, Anhui, China
  • Published:2020-07-14

摘要: 引入了强g(x)-J#-clean环的概念, 得到了强g(x)-J#-clean环的若干性质,并借助于强g(x)-J#-clean环给出了强J#-clean环的刻画。

关键词: 强J-clean环, 强J#-clean环, g(x)-J-clean环, g(x)-J#-clean环

Abstract: The concept of strongly g(x)-J#-clean rings are introduced. Some properties of strongly g(x)-J#-cleanrings are obtained. Moreover, equivalent characterizations of strongly J#-cleanrings are given by means of strongly g(x)-J#-clean rings.

Key words: strongly J-cleanring, strongly J#-cleanring, strongly g(x)-J-cleanring, strongly g(x)-J#-cleanring

中图分类号: 

  • O153.3
[1] NICHOLSON W K. Lifting idempotents and exchange rings[J]. Transactions of the American Mathematical Society, 1977, 229:269-278.
[2] NICHOLSON W K. Strongly clean rings and Fittings lemma[J]. Communications in Algebra, 1999, 27(8):3583-3592.
[3] CAMILLO V P, SIMóN J J. The Nicholson-Varadarajan theorem on clean linear transformations[J]. Glasgow Mathematical Journal, 2002, 44(3):365-369.
[4] CHEN Huanyin. On strongly J-clean rings[J]. Communications in Algebra, 2010, 38(10):3791-3804.
[5] JAVADI H S, JAMSHIDVAND S, MALEKI M. On strongly J-clean rings associated with polynomial identity g(x)=0[J]. Journal of Linear and Topological Algebra, 2013, 2(2):71-76.
[6] 程瑶,刘少然,殷晓斌.强J-clean环的推广[J].安徽师范大学学报(自然科学版),2017,40(4):323-326. CHENG Yao, LIU Shaoran, YIN Xiaobin. The generalization of strongly J-clean rings[J]. Journal of Anhui Normal University(Natural Science), 2017, 40(4):323-326.
[7] FAN Lingling, YANG Xiande. On rings whose elements are the sum of a unit and a root of a fixed ploynomial[J]. Communications in Algebra, 2008, 36(1):269-278.
[8] XIAO Guangshi, TONG Wenting. n-clean rings and weakly unit stable range rings[J]. Communications in Algebra, 2005, 33(5):1501-1517.
[9] HANI A K, HANDAM A H. On weakly g(x)-nil clean rings[J]. International Journal of Pure and Applied Mathematics, 2017, 114(2):191-202.
[10] ASHRAFI N, AHMADI Z. Weakly g(x)-clean rings[J].Iranian Journal of Mathematical Sciences and Informatics, 2012, 7(2):83-91.
[11] HANDAM A H, KHASHAN H A. Rings in which elements are the sum of a nilpotent and a root of a fixed polynomial that commute[J].Open Mathematics, 2017, 15(1):420-426.
[1] 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107.
[2] 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22-26.
[3] 程诚, 邹世佳. 一类Hopf代数的不可约可裂迹模[J]. 山东大学学报(理学版), 2018, 53(4): 11-15.
[4] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1-8.
[5] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[6] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[7] 汪慧星,崔建,陈怡宁. 诣零*-clean环[J]. 山东大学学报(理学版), 2017, 52(12): 16-24.
[8] 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35.
[9] 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23.
[10] 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17.
[11] 孙彦中,杨晓燕. 相对于半对偶模的Gorenstein AC-投射模[J]. 山东大学学报(理学版), 2017, 52(10): 31-35.
[12] 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89.
[13] 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110.
[14] 王尧,周云,任艳丽. 强2-好环[J]. 山东大学学报(理学版), 2017, 52(2): 14-18.
[15] 鲁琦,鲍宏伟. ZWGP-内射性与环的非奇异性[J]. 山东大学学报(理学版), 2017, 52(2): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!