《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (12): 140-150.doi: 10.6040/j.issn.1671-9352.0.2022.434
汲颖1,2(),邓波1,2,赵海兴1,2,3,*(),唐彦龙2,3
Ying JI1,2(),Bo DENG1,2,Haixing ZHAO1,2,3,*(),Yanlong TANG2,3
摘要:
图不变量广泛应用于构建基于熵的度量以表征复杂网络的结构。特别地, 基于控制集的图熵常应用于刻画通信系统的信息量和计算机网络的稳定性。研究完全图、星图、梳状图和友谊图在不交的并、联图、冠积和笛卡尔积4种图运算下基于控制集的图熵计算。
中图分类号:
1 | SHANNON C E , WEAVER W . The mathematical theory of communications[M]. Urbana: University of Illinois, 1949. |
2 |
RASHEVSKY N . Life, information theory and topology[J]. The Bulletin of Mathematical Biophysics, 1955, 17 (3): 229- 235.
doi: 10.1007/BF02477860 |
3 |
TRUCCO E . A note on the information content of graphs[J]. The Bulletin of Mathematical Biophysics, 1956, 18 (2): 129- 135.
doi: 10.1007/BF02477836 |
4 |
MOWSHOWITZ A . Entropy and the complexity of the graphs: Ⅰ. An index of the relative complexity of a graph[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (1): 175- 204.
doi: 10.1007/BF02476948 |
5 |
MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅱ. The information content of digraphs and infinite graphs[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (2): 225- 240.
doi: 10.1007/BF02476692 |
6 |
MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅲ. Graphs with prescribed information content[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (3): 387- 414.
doi: 10.1007/BF02476603 |
7 |
MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅳ. Entropy measures and graphical structure[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (4): 533- 546.
doi: 10.1007/BF02476673 |
8 |
DAUDEL R , BADER R F W , STEPHENS M E , et al. The electron pair in chemistry[J]. Canadian Journal of Chemistry, 1974, 52 (8): 1310- 1320.
doi: 10.1139/v74-201 |
9 |
BONCHEV D , KAMENSKI D , KAMENSKA V . Symmetry and information content of chemical structures[J]. Bulletin of Mathematical Biology, 1976, 38 (2): 119- 133.
doi: 10.1007/BF02471752 |
10 | BONCHEV D . Information indices for atoms and molecules[J]. MATCH Communications in Mathematical and in Computer Chemistry, 1979, 7, 65- 112. |
11 |
CAO S , DEHMER M , SHI Y . Extremality of degree-based graph entropies[J]. Information Sciences, 2014, 278, 22- 33.
doi: 10.1016/j.ins.2014.03.133 |
12 |
ALEKSANDAR I , MATTHIAS D . On the distance based graph entropies[J]. Applied Mathematics and Computation, 2015, 269, 647- 650.
doi: 10.1016/j.amc.2015.07.100 |
13 |
DEHMER M , LI X L , SHI Y T . Connections between generalized graph entropies and graph energy[J]. Complexity, 2015, 21 (1): 35- 41.
doi: 10.1002/cplx.21539 |
14 |
DEHMER M , MOWSHOWITZ A . A history of graph entropy measures[J]. Information Sciences: an International Journal, 2011, 181 (1): 57- 78.
doi: 10.1016/j.ins.2010.08.041 |
15 | DEHMER M , EMMERT-STREIB F , CHEN Z Q , et al. Mathematical foundations and applications of graph entropy[M]. Weinheim: Wiley-Blackwell, 2016. |
16 | DAS K , SHI Y T . Some properties on entropies of graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2017, 78 (2): 259- 272. |
17 |
CAO S , DEHMER M , KANG Z . Network entropies based on independent sets and matchings[J]. Applied Mathematics and Computation, 2017, 307, 265- 270.
doi: 10.1016/j.amc.2017.02.021 |
18 |
ȘAHIN B . New network entropy: the domination entropy of graphs[J]. Information Processing Letters, 2022, 174, 106195.
doi: 10.1016/j.ipl.2021.106195 |
19 | ALIKHANI S , PENG Y . Introduction to domination polynomial of a graph[J]. ARS Combinatoria, 2014, 114 (4): 257- 266. |
20 | ALIKHANI S , PENG Y H . Dominating sets and domination polynomials of paths[J]. International Journal of Mathematics and Mathematical Sciences, 2009, 2009 (1): 542040. |
21 | ALIKHANI S , PENG Y H . Dominating sets and domination polynomial of cycles[J]. Global Journal of Pure and Applied Mathematics, 2008, 4 (2): 151- 162. |
22 |
ALIKHANI S , BROWN J I , JAHARI S . On the domination polynomials of friendship graphs[J]. Filomat, 2016, 30 (1): 169- 178.
doi: 10.2298/FIL1601169A |
23 | HAYNES T W , HEDETNIEMI S T , SLATER P J . Fundamentals of domination in graphs[M]. New York: Marcel Dekker, 1998. |
24 | IMRICH W , KLAVŽAR S . Product graphs: structure and recognition[M]. New York: John Wiley & Sons, 2000. |
25 | RANI A , IMRAN M , ALI U . Sharp bounds for the inverse sum indeg index of graph operations[J]. Mathematical Problems in Engineering, 2021, 2021, 5561033. |
26 | BEATON I. On dominating sets and the domination polynomials[D]. Halifax: Dalhousie University, 2021. |
27 |
AKBARI S , ALIKHANI S , PENG Y H . Characterization of graphs using domination polynomials[J]. European Journal of Combinatorics, 2010, 31 (7): 1714- 1724.
doi: 10.1016/j.ejc.2010.03.007 |
28 | ALIKHANI S . The domination polynomial of some graph operations[J]. ISRN Combinatorics, 2013, 2013, 146595. |
29 | KOTER T, PREEN J, TITTMANN P. Domination polynomials of graph products[EB/OL]. (2013-12-23). https://arxiv.ogr/abs/1305.1475v2. |
30 |
GHORBANI M , DEHMER M , ZANGI S . Graph operations based on using distance-based graph entropies[J]. Applied Mathematics and Computation, 2018, 333, 547- 555.
doi: 10.1016/j.amc.2018.04.003 |
[1] | 吴传书,赵海兴,邓波. 关于图运算的基于度的图熵[J]. 《山东大学学报(理学版)》, 2022, 57(6): 44-53. |
|