您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (12): 140-150.doi: 10.6040/j.issn.1671-9352.0.2022.434

•   • 上一篇    下一篇

基于图运算下的控制熵

汲颖1,2(),邓波1,2,赵海兴1,2,3,*(),唐彦龙2,3   

  1. 1. 青海师范大学数学与统计学院, 青海 西宁 810008
    2. 藏语智能信息处理及应用国家重点实验室, 青海 西宁 810008
    3. 青海师范大学计算机学院, 青海 西宁 810008
  • 收稿日期:2022-08-19 出版日期:2023-12-20 发布日期:2023-12-19
  • 通讯作者: 赵海兴 E-mail:jiying197@163.com;h.x.zhao@163.com
  • 作者简介:汲颖(1997—),女,硕士研究生,研究方向为图论及其应用. E-mail:jiying197@163.com
  • 基金资助:
    111引智计划项目(D20035);国家重点研发计划项目(2020YFC1523300);青海省科技厅资助项目(2022-ZJ-T02)

Domination entropy based on graph operations

Ying JI1,2(),Bo DENG1,2,Haixing ZHAO1,2,3,*(),Yanlong TANG2,3   

  1. 1. College of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China
    2. State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810008, Qinghai, China
    3. College of Computer, Qinghai Normal University, Xining 810008, Qinghai, China
  • Received:2022-08-19 Online:2023-12-20 Published:2023-12-19
  • Contact: Haixing ZHAO E-mail:jiying197@163.com;h.x.zhao@163.com

摘要:

图不变量广泛应用于构建基于熵的度量以表征复杂网络的结构。特别地, 基于控制集的图熵常应用于刻画通信系统的信息量和计算机网络的稳定性。研究完全图、星图、梳状图和友谊图在不交的并、联图、冠积和笛卡尔积4种图运算下基于控制集的图熵计算。

关键词: 图熵, 图运算, 控制多项式, 控制熵

Abstract:

Graph invariants are widely used to construct entropy-based metrics to characterize the structure of complex networks. In particular, graph entropy based on dominating sets is often applied to characterize the amount of information in communication systems and the stability of computer networks. Graph entropy calculations are studied based on dominating sets under the four operations of graphs. That is the operations of the disjoint union, joining, corona product, and Cartesian product using the complete graph, star graph, comb graph, and friendship graph.

Key words: graph entropy, graph operation, domination polynomial, domination entropy

中图分类号: 

  • O157.5

图1

梳状图En"

图2

友谊图F2、F3和F4"

1 SHANNON C E , WEAVER W . The mathematical theory of communications[M]. Urbana: University of Illinois, 1949.
2 RASHEVSKY N . Life, information theory and topology[J]. The Bulletin of Mathematical Biophysics, 1955, 17 (3): 229- 235.
doi: 10.1007/BF02477860
3 TRUCCO E . A note on the information content of graphs[J]. The Bulletin of Mathematical Biophysics, 1956, 18 (2): 129- 135.
doi: 10.1007/BF02477836
4 MOWSHOWITZ A . Entropy and the complexity of the graphs: Ⅰ. An index of the relative complexity of a graph[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (1): 175- 204.
doi: 10.1007/BF02476948
5 MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅱ. The information content of digraphs and infinite graphs[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (2): 225- 240.
doi: 10.1007/BF02476692
6 MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅲ. Graphs with prescribed information content[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (3): 387- 414.
doi: 10.1007/BF02476603
7 MOWSHOWITZ A . Entropy and the complexity of graphs: Ⅳ. Entropy measures and graphical structure[J]. The Bulletin of Mathematical Biophysics, 1968, 30 (4): 533- 546.
doi: 10.1007/BF02476673
8 DAUDEL R , BADER R F W , STEPHENS M E , et al. The electron pair in chemistry[J]. Canadian Journal of Chemistry, 1974, 52 (8): 1310- 1320.
doi: 10.1139/v74-201
9 BONCHEV D , KAMENSKI D , KAMENSKA V . Symmetry and information content of chemical structures[J]. Bulletin of Mathematical Biology, 1976, 38 (2): 119- 133.
doi: 10.1007/BF02471752
10 BONCHEV D . Information indices for atoms and molecules[J]. MATCH Communications in Mathematical and in Computer Chemistry, 1979, 7, 65- 112.
11 CAO S , DEHMER M , SHI Y . Extremality of degree-based graph entropies[J]. Information Sciences, 2014, 278, 22- 33.
doi: 10.1016/j.ins.2014.03.133
12 ALEKSANDAR I , MATTHIAS D . On the distance based graph entropies[J]. Applied Mathematics and Computation, 2015, 269, 647- 650.
doi: 10.1016/j.amc.2015.07.100
13 DEHMER M , LI X L , SHI Y T . Connections between generalized graph entropies and graph energy[J]. Complexity, 2015, 21 (1): 35- 41.
doi: 10.1002/cplx.21539
14 DEHMER M , MOWSHOWITZ A . A history of graph entropy measures[J]. Information Sciences: an International Journal, 2011, 181 (1): 57- 78.
doi: 10.1016/j.ins.2010.08.041
15 DEHMER M , EMMERT-STREIB F , CHEN Z Q , et al. Mathematical foundations and applications of graph entropy[M]. Weinheim: Wiley-Blackwell, 2016.
16 DAS K , SHI Y T . Some properties on entropies of graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2017, 78 (2): 259- 272.
17 CAO S , DEHMER M , KANG Z . Network entropies based on independent sets and matchings[J]. Applied Mathematics and Computation, 2017, 307, 265- 270.
doi: 10.1016/j.amc.2017.02.021
18 ȘAHIN B . New network entropy: the domination entropy of graphs[J]. Information Processing Letters, 2022, 174, 106195.
doi: 10.1016/j.ipl.2021.106195
19 ALIKHANI S , PENG Y . Introduction to domination polynomial of a graph[J]. ARS Combinatoria, 2014, 114 (4): 257- 266.
20 ALIKHANI S , PENG Y H . Dominating sets and domination polynomials of paths[J]. International Journal of Mathematics and Mathematical Sciences, 2009, 2009 (1): 542040.
21 ALIKHANI S , PENG Y H . Dominating sets and domination polynomial of cycles[J]. Global Journal of Pure and Applied Mathematics, 2008, 4 (2): 151- 162.
22 ALIKHANI S , BROWN J I , JAHARI S . On the domination polynomials of friendship graphs[J]. Filomat, 2016, 30 (1): 169- 178.
doi: 10.2298/FIL1601169A
23 HAYNES T W , HEDETNIEMI S T , SLATER P J . Fundamentals of domination in graphs[M]. New York: Marcel Dekker, 1998.
24 IMRICH W , KLAVŽAR S . Product graphs: structure and recognition[M]. New York: John Wiley & Sons, 2000.
25 RANI A , IMRAN M , ALI U . Sharp bounds for the inverse sum indeg index of graph operations[J]. Mathematical Problems in Engineering, 2021, 2021, 5561033.
26 BEATON I. On dominating sets and the domination polynomials[D]. Halifax: Dalhousie University, 2021.
27 AKBARI S , ALIKHANI S , PENG Y H . Characterization of graphs using domination polynomials[J]. European Journal of Combinatorics, 2010, 31 (7): 1714- 1724.
doi: 10.1016/j.ejc.2010.03.007
28 ALIKHANI S . The domination polynomial of some graph operations[J]. ISRN Combinatorics, 2013, 2013, 146595.
29 KOTER T, PREEN J, TITTMANN P. Domination polynomials of graph products[EB/OL]. (2013-12-23). https://arxiv.ogr/abs/1305.1475v2.
30 GHORBANI M , DEHMER M , ZANGI S . Graph operations based on using distance-based graph entropies[J]. Applied Mathematics and Computation, 2018, 333, 547- 555.
doi: 10.1016/j.amc.2018.04.003
[1] 吴传书,赵海兴,邓波. 关于图运算的基于度的图熵[J]. 《山东大学学报(理学版)》, 2022, 57(6): 44-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .