《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (4): 23-30.doi: 10.6040/j.issn.1671-9352.0.2023.252
Jianji CAO(),Junxin WANG*(),Pengfei BAI
摘要:
一个有限群G上的斜态射为G的一个置换φ,满足φ(1)=1且φ(gh)=φ(g)φπ(g)(h)对任意g, h ∈ G均成立,其中π为G到集合{1, 2, …, d-1}的一个函数且d为φ的阶。若对任意的g ∈ G都有π(g)=1,则φ为G的自同构。因此斜态射为群的自同构的推广。若对任意g ∈ G都有π(φ(g))=π(g), 则斜态射φ被称为光滑斜态射。本文研究了一类蕴含交换极大子群的极大类3-群上的光滑斜态射,并给出了其完全分类。
中图分类号:
1 |
JAJCAY R , ŠIRÁŇ J . Skew-morphisms of regular Cayley maps[J]. Discrete Mathematics, 2002, 244, 167- 179.
doi: 10.1016/S0012-365X(01)00081-4 |
2 |
CONDER M , JAJCAY R , TUCKER T . Cyclic complements and skew morphisms of groups[J]. Journal of Algebra, 2016, 453, 68- 100.
doi: 10.1016/j.jalgebra.2015.12.024 |
3 |
CONDER M , TUCKER T . Regular Cayley maps for cyclic groups[J]. Transactions of the American Mathematical Society, 2014, 366, 3585- 3609.
doi: 10.1090/S0002-9947-2014-05933-3 |
4 |
KOVÁCS I , KWON Y S . Regular Cayley maps for dihedral groups[J]. Journal of Combinatorial Theory(Series B), 2021, 148, 84- 124.
doi: 10.1016/j.jctb.2020.12.002 |
5 |
DU S F , HU K . Skew morphisms of cyclic 2-groups[J]. Journal of Group Theory, 2019, 22 (4): 617- 635.
doi: 10.1515/jgth-2019-2046 |
6 |
KOVÁCS I , NEDELA R . Skew morphisms of cyclic p-groups[J]. Journal of Group Theory, 2017, 20 (6): 1135- 1154.
doi: 10.1515/jgth-2017-0015 |
7 |
CHEN J Y , DU S F , LI C H . Skew-morphisms of nonabelian characteristically simple groups[J]. Journal of Combinatorial Theory(Series A), 2022, 185, 105539.
doi: 10.1016/j.jcta.2021.105539 |
8 | HU K , KOVÁCS I , KWON Y S . Regular Cayley maps and skew morphisms of dihedral groups[J]. Journal Group Theory, 2023, 26 (3): 547- 569. |
9 |
CONDER M , JAJCAY R , TUCKER T . Regular t-balanced Cayley maps[J]. Journal of Combinatorial Theory(Series B), 2007, 97, 453- 473.
doi: 10.1016/j.jctb.2006.07.008 |
10 |
CONDER M , JAJCAY R , TUCKER T . Regular Cayley maps for finite abelian groups[J]. Journal of Algebraic Combinatorics, 2007, 25, 259- 283.
doi: 10.1007/s10801-006-0037-0 |
11 |
KWON Y S . A classification of regular t-balanced Cayley maps for cyclic groups[J]. Discrete Mathematics, 2013, 313, 656- 664.
doi: 10.1016/j.disc.2012.12.012 |
12 |
KWAK J H , KWON Y S , FENG R . A classification of regular t-balanced Cayley maps on dihedral groups[J]. European Journal of Combinatorics, 2006, 27 (3): 382- 392.
doi: 10.1016/j.ejc.2004.12.002 |
13 |
KWAK J H , OH J . A classification of regular t-balanced Cayley maps on dicyclic groups[J]. European Journal of Combinatorics, 2008, 29 (5): 1151- 1159.
doi: 10.1016/j.ejc.2007.06.023 |
14 |
OH J . Regular t-balanced Cayley maps on semi-dihedral groups[J]. Journal of Combinatorial Theory(Series B), 2009, 99 (2): 480- 493.
doi: 10.1016/j.jctb.2008.09.006 |
15 | CZISZTER K , DOMOKOS M . The Noether number for the groups with a cyclic subgroup of index two[J]. Journal of Algebra, 2013, 399, 546- 560. |
16 | BACHRATÝ M , JAJCAY R . Classification of coset-preserving skew morphisms of finite cyclic groups[J]. Australasian Journal of Combinatorics, 2017, 67, 259- 280. |
17 | 王娜儿, 胡侃, 袁凯, 等. 二面体群上的光滑skew-同态[J]. 当代艺术数学, 2019, 16 (2): 527- 547. |
WANG Naer , HU Kan , YUAN Kai , et al. Smooth skew morphisms of dihedral groups[J]. Ars Mathematica Contemporanea, 2019, 16 (2): 527- 547. | |
18 |
HU K , RUAN D Y . Smooth skew morphisms of dicyclic groups[J]. Journal of Algebraic Combinatorics, 2022, 56 (4): 1119- 1134.
doi: 10.1007/s10801-022-01149-8 |
19 |
ZHANG J Y , DU S . On the skew-morphisms of dihedral groups[J]. Journal of Group Theory, 2016, 19 (6): 993- 1016.
doi: 10.1515/jgth-2016-0027 |
20 | PARKER C , SEMERARO J . Fusion systems on maximal class 3-groups of rank two[J]. American Mathematical Society, 2019, 147, 3773- 3786. |
[1] | 陈心丹,许丽,缪龙,刘威. 有限群的2-极大子群的边界因子[J]. 《山东大学学报(理学版)》, 2023, 58(2): 1-5. |
[2] | 史江涛,任惠瑄. 关于非幂零极大子群皆正规的有限群具有Sylow塔的注记[J]. 《山东大学学报(理学版)》, 2021, 56(8): 58-60. |
[3] | 毛月梅,杨南迎. 有限群的p-幂零性和超可解性[J]. 山东大学学报(理学版), 2016, 51(4): 39-42. |
[4] | 高辉,高胜哲*,尹丽. 子群的θ-完备和群的结构[J]. 山东大学学报(理学版), 2014, 49(03): 43-45. |
[5] | 高辉,高胜哲,尹丽. 关于极大子群的θ-偶[J]. J4, 2011, 46(2): 97-100. |
[6] | 王俊新. 几则有限群可解的条件[J]. J4, 2009, 44(8): 35-38. |
|