您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (4): 23-30.doi: 10.6040/j.issn.1671-9352.0.2023.252

•   • 上一篇    下一篇

蕴含交换极大子群的极大类3-群上的光滑斜态射

曹建基(),王俊新*(),白鹏飞   

  1. 山西财经大学应用数学学院,山西 太原 030006
  • 收稿日期:2023-06-05 出版日期:2024-04-20 发布日期:2024-04-12
  • 通讯作者: 王俊新 E-mail:13994371056@163.com;wangjunxin660712@163.com
  • 作者简介:曹建基(1979—), 男, 副教授, 博士, 研究方向为有限群论及其应用. E-mail: 13994371056@163.com
  • 基金资助:
    国家自然科学基金资助项目(12171302);国家自然科学基金资助项目(11801334);国家自然科学基金资助项目(12061030);山西省自然科学基金资助项目(202103021224287);山西省高等学校科技创新资助项目(2021L278)

Smooth skew morphisms of a kind of maximal class 3-groups which have abelian maximal subgroups

Jianji CAO(),Junxin WANG*(),Pengfei BAI   

  1. School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
  • Received:2023-06-05 Online:2024-04-20 Published:2024-04-12
  • Contact: Junxin WANG E-mail:13994371056@163.com;wangjunxin660712@163.com

摘要:

一个有限群G上的斜态射为G的一个置换φ,满足φ(1)=1且φ(gh)=φ(g)φπ(g)(h)对任意g, hG均成立,其中πG到集合{1, 2, …, d-1}的一个函数且dφ的阶。若对任意的gG都有π(g)=1,则φG的自同构。因此斜态射为群的自同构的推广。若对任意gG都有π(φ(g))=π(g), 则斜态射φ被称为光滑斜态射。本文研究了一类蕴含交换极大子群的极大类3-群上的光滑斜态射,并给出了其完全分类。

关键词: 极大类3-群, 光滑斜态射, 正则凯莱地图, 斜态射, 极大子群

Abstract:

A skew morphism φ of a finite group G is a permutation of G fixing the identity of G and satisfying the property φ(gh)=φ(g)φπ(g)(h) for any g, hG, where π is a function from G to {1, 2, …, d-1} for the order d of φ. If for any gG, π(g)=1, then φ is an automorphism of G. Hence a skew morphism is a generalization of an automorphism. When π(φ(g))=π(g) for any gG, the skew morphism φ is called a smooth skew morphism. In this paper, we classify all smooth skew morphisms of a kind of maximal class 3-groups which have abelian maximal subgroups.

Key words: maximal class 3-group, smooth skew morphism, regular Cayley map, skew morphism, maximal subgroup

中图分类号: 

  • O152.1
1 JAJCAY R , ŠIRÁŇ J . Skew-morphisms of regular Cayley maps[J]. Discrete Mathematics, 2002, 244, 167- 179.
doi: 10.1016/S0012-365X(01)00081-4
2 CONDER M , JAJCAY R , TUCKER T . Cyclic complements and skew morphisms of groups[J]. Journal of Algebra, 2016, 453, 68- 100.
doi: 10.1016/j.jalgebra.2015.12.024
3 CONDER M , TUCKER T . Regular Cayley maps for cyclic groups[J]. Transactions of the American Mathematical Society, 2014, 366, 3585- 3609.
doi: 10.1090/S0002-9947-2014-05933-3
4 KOVÁCS I , KWON Y S . Regular Cayley maps for dihedral groups[J]. Journal of Combinatorial Theory(Series B), 2021, 148, 84- 124.
doi: 10.1016/j.jctb.2020.12.002
5 DU S F , HU K . Skew morphisms of cyclic 2-groups[J]. Journal of Group Theory, 2019, 22 (4): 617- 635.
doi: 10.1515/jgth-2019-2046
6 KOVÁCS I , NEDELA R . Skew morphisms of cyclic p-groups[J]. Journal of Group Theory, 2017, 20 (6): 1135- 1154.
doi: 10.1515/jgth-2017-0015
7 CHEN J Y , DU S F , LI C H . Skew-morphisms of nonabelian characteristically simple groups[J]. Journal of Combinatorial Theory(Series A), 2022, 185, 105539.
doi: 10.1016/j.jcta.2021.105539
8 HU K , KOVÁCS I , KWON Y S . Regular Cayley maps and skew morphisms of dihedral groups[J]. Journal Group Theory, 2023, 26 (3): 547- 569.
9 CONDER M , JAJCAY R , TUCKER T . Regular t-balanced Cayley maps[J]. Journal of Combinatorial Theory(Series B), 2007, 97, 453- 473.
doi: 10.1016/j.jctb.2006.07.008
10 CONDER M , JAJCAY R , TUCKER T . Regular Cayley maps for finite abelian groups[J]. Journal of Algebraic Combinatorics, 2007, 25, 259- 283.
doi: 10.1007/s10801-006-0037-0
11 KWON Y S . A classification of regular t-balanced Cayley maps for cyclic groups[J]. Discrete Mathematics, 2013, 313, 656- 664.
doi: 10.1016/j.disc.2012.12.012
12 KWAK J H , KWON Y S , FENG R . A classification of regular t-balanced Cayley maps on dihedral groups[J]. European Journal of Combinatorics, 2006, 27 (3): 382- 392.
doi: 10.1016/j.ejc.2004.12.002
13 KWAK J H , OH J . A classification of regular t-balanced Cayley maps on dicyclic groups[J]. European Journal of Combinatorics, 2008, 29 (5): 1151- 1159.
doi: 10.1016/j.ejc.2007.06.023
14 OH J . Regular t-balanced Cayley maps on semi-dihedral groups[J]. Journal of Combinatorial Theory(Series B), 2009, 99 (2): 480- 493.
doi: 10.1016/j.jctb.2008.09.006
15 CZISZTER K , DOMOKOS M . The Noether number for the groups with a cyclic subgroup of index two[J]. Journal of Algebra, 2013, 399, 546- 560.
16 BACHRATÝ M , JAJCAY R . Classification of coset-preserving skew morphisms of finite cyclic groups[J]. Australasian Journal of Combinatorics, 2017, 67, 259- 280.
17 王娜儿, 胡侃, 袁凯, 等. 二面体群上的光滑skew-同态[J]. 当代艺术数学, 2019, 16 (2): 527- 547.
WANG Naer , HU Kan , YUAN Kai , et al. Smooth skew morphisms of dihedral groups[J]. Ars Mathematica Contemporanea, 2019, 16 (2): 527- 547.
18 HU K , RUAN D Y . Smooth skew morphisms of dicyclic groups[J]. Journal of Algebraic Combinatorics, 2022, 56 (4): 1119- 1134.
doi: 10.1007/s10801-022-01149-8
19 ZHANG J Y , DU S . On the skew-morphisms of dihedral groups[J]. Journal of Group Theory, 2016, 19 (6): 993- 1016.
doi: 10.1515/jgth-2016-0027
20 PARKER C , SEMERARO J . Fusion systems on maximal class 3-groups of rank two[J]. American Mathematical Society, 2019, 147, 3773- 3786.
[1] 陈心丹,许丽,缪龙,刘威. 有限群的2-极大子群的边界因子[J]. 《山东大学学报(理学版)》, 2023, 58(2): 1-5.
[2] 史江涛,任惠瑄. 关于非幂零极大子群皆正规的有限群具有Sylow塔的注记[J]. 《山东大学学报(理学版)》, 2021, 56(8): 58-60.
[3] 毛月梅,杨南迎. 有限群的p-幂零性和超可解性[J]. 山东大学学报(理学版), 2016, 51(4): 39-42.
[4] 高辉,高胜哲*,尹丽. 子群的θ-完备和群的结构[J]. 山东大学学报(理学版), 2014, 49(03): 43-45.
[5] 高辉,高胜哲,尹丽. 关于极大子群的θ-偶[J]. J4, 2011, 46(2): 97-100.
[6] 王俊新. 几则有限群可解的条件[J]. J4, 2009, 44(8): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[2] 张爱平,李刚 . LR拟正规Ehresmann半群[J]. J4, 2006, 41(5): 44 -47 .
[3] 边斐,何海伦,陈秀兰*,张玉忠 . 离子对深海适冷菌Pseudoalteromonas sp. SM9913胞外蛋白酶分泌的影响[J]. J4, 2006, 41(5): 166 -172 .
[4] 王 震,张 琎 . NLS方程的守恒数值格式及其收敛性分析[J]. J4, 2007, 42(3): 13 -17 .
[5] 王康 李华. 化学计量学方法用于蛤青注射色谱数据重叠峰的分辨[J]. J4, 2009, 44(11): 16 -20 .
[6] 陈 莉, . 非方广义系统带干扰抑制的奇异LQ次优控制问题[J]. J4, 2006, 41(2): 74 -77 .
[7] 谢涛,左可正. 关于两个幂等算子组合的Drazin逆的若干探讨[J]. J4, 2013, 48(4): 95 -103 .
[8] 王德良,辜娇峰, 何平 . 八大公山红腹角雉对植被因素选择的分析[J]. J4, 2009, 44(3): 17 -21 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .