您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 72-77.doi: 10.6040/j.issn.1671-9352.0.2023.267

• • 上一篇    

三维欧氏空间中的Frenet型达布曲线

黄杰   

  1. 黑龙江大学数学科学学院, 黑龙江 哈尔滨 150000
  • 发布日期:2025-02-14
  • 作者简介:黄杰(1990— ),女,讲师,博士,研究方向为奇点理论在微分几何学中的应用. E-mail:2020042@hlju.edu.cn
  • 基金资助:
    黑龙江省省属高等学校基本科研业务费基础研究项目(2020-KYYWF-1041)

Frenet type Darboux curves in the three-dimensional Euclidean space

HUANG Jie   

  1. School of Mathematical Science, Heilongjiang University, Harbin 150000, Heilongjiang, China
  • Published:2025-02-14

摘要: 在三维欧氏空间中定义了带有奇异点的Frenet型达布曲线,给出了一条曲线是Frenet型达布曲线的充分必要条件,又通过球面Legendre曲线构造出了该曲线,并且证明了标架螺线与标架从切曲线都是Frenet型达布曲线。

关键词: Frenet型达布曲线, 球面Legendre曲线, 标架螺线, 标架从切曲线

Abstract: A Frenet type Darboux curve with singular points is defined in the three-dimensional Euclidean space, and we give a necessary and sufficient condition for a curve to be a Frenet type Darboux curve. Then we construct the Frenet type Darboux curve through a spherical Legendre curve, and prove that both the framed helix and the framed rectifying curve are Frenet type Darboux curves.

Key words: Frenet type Darboux curve, spherical Legendre curve, framed helix, framed rectifying curve

中图分类号: 

  • O186.1
[1] DOCARMO M P. Differential geometry of curves and surfaces[M]. New Jerse: Prentice-Hall, 1976:1-22.
[2] 于延华,杨云,刘会立. 三维欧氏空间中的达布曲线[J]. 沈阳师范大学学报(自然科学版),2013,31(4):503-508. YU Yanhua, YANG Yun, LIU Huili. Darboux curves in 3-dimensional Euclidean space[J]. Journal of Shenyang Normal University(Natural Science), 2013, 31(4):503-508.
[3] HONDA S, TAKAHASHI M. Framed curves in the Euclidean space[J]. Advances in Geometry, 2016, 16(3):265-276.
[4] HONDA S. Rectifying developable surfaces of framed base curves and framed helices[J]. Advanced Studies in Pure Mathematics, 2018, 78:273-292.
[5] HONDA S, TAKAHASHI M. Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space[J]. Turkish Journal of Mathematics, 2020, 44(3):883-899.
[6] HUANG Jie, PEI Donghe. Singular special curves in 3-space forms[J]. Mathematics, 2020, 8(5):846.
[7] LI Yanlin, LIU Siyao, WANG Zhigang. Tangent developables and Darboux developables of framed curves[J]. Topology and its Applications, 2021, 301(SI):107526.
[8] WANG Yongqiao, PEI Donghe, GAO Ruimei. Generic properties of framed rectifying curves[J]. Mathematics, 2019, 7(1):37.
[9] CHEN B Y, DILLEN F. Rectifying curves as centrodes and extremal curves[J]. Bulletin of the Institute of Mathematics Academia Sinica, 2005, 33(2):77-90.
[10] LI Yanlin, PEI Donghe, TAKAHASHI M, et al. Envelopes of Legendre curves in the unit spherical bundle over the unit sphere[J]. Quarterly Journal of Mathematics, 2018, 69(2):631-653.
[1] 何国庆,张量,刘海蓉. 具有半对称度量联络的广义Sasakian空间形式中的子流形的Chen-Ricci不等式[J]. 山东大学学报(理学版), 2017, 52(10): 56-63.
[2] 文海燕,刘建成. 伪黎曼空间型中具有常数量曲率的类空子流形[J]. 山东大学学报(理学版), 2017, 52(10): 89-96.
[3] 邓义华. f-调和函数的Hess矩阵的估计及其在分裂定理中的应用[J]. 山东大学学报(理学版), 2017, 52(4): 83-86.
[4] 何超,李影,宋卫东. 局部对称伪黎曼流形中的2-调和类时子流形[J]. 山东大学学报(理学版), 2016, 51(10): 54-58.
[5] 李影, 宋卫东. 关于deSitter空间中的伪脐类时子流形[J]. 山东大学学报(理学版), 2015, 50(10): 64-67.
[6] 蒋岩,吴凤,张量. 关于双曲空间上Kenmotsu统计结构的一个结果[J]. 《山东大学学报(理学版)》, 2021, 56(11): 105-110.
[7] 吴凤,张量. 关于常φ -曲率Sasaki统计流形的一些结果[J]. 《山东大学学报(理学版)》, 2021, 56(4): 86-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!