您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 67-76.doi: 10.6040/j.issn.1671-9352.0.2023.341

•   • 上一篇    下一篇

重心插值配点法求解小振幅长波广义BBM-KdV方程

吕秀敏1(),葛倩2,*(),李金2   

  1. 1. 山东交通学院理学院,山东 济南 250357
    2. 山东建筑大学理学院,山东 济南 250101
  • 收稿日期:2023-08-04 出版日期:2024-08-20 发布日期:2024-07-31
  • 通讯作者: 葛倩 E-mail:lvxiumin@sdjtu.edu.cn;geqian@sdjzu.edu.cn
  • 作者简介:吕秀敏(1986—),女,讲师,硕士,研究方向为微分、积分方程数值解. E-mail:lvxiumin@sdjtu.edu.cn
  • 基金资助:
    山东省自然科学基金资助项目(ZR2022MA003);山东交通学院科研基金资助项目(Z202334)

Barycentric interpolation collocation method for solving the small-amplitude long-wave scheme generalized BBM-KdV equation

Xiumin LYU1(),Qian GE2,*(),Jin LI2   

  1. 1. School of Science, Shandong Jiaotong University, Jinan 250357, Shandong, China
    2. School of Science, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • Received:2023-08-04 Online:2024-08-20 Published:2024-07-31
  • Contact: Qian GE E-mail:lvxiumin@sdjtu.edu.cn;geqian@sdjzu.edu.cn

摘要:

应用重心插值配点法求解小振幅长波格式下的广义Benjamin-Bona-Mahony(BBM)-Korteweg-de Vries(KdV)方程。针对方程中的非线性项ηpηx,采用直接线性化方法将其转化为线性项。利用重心插值基函数构造方程未知函数的近似函数,建立时空域上重心插值配点法离散广义BBM-KdV方程的矩阵方程,并进行了收敛性分析。数值算例验证了重心插值配点法求解广义BBM-KdV方程的有效性和数值计算精度,其计算精度可达到10-8量级。

关键词: 小振幅长波, 广义BBM-KdV方程, 重心插值, 配点法

Abstract:

The barycentric interpolation collocation method is applied to solve the small-amplitude long-wave scheme generalized Benjamin-Bona-Mahony(BBM)-Korteweg-de Vries (KdV) equation in the small amplitude long wave scheme. By the direct linearization method, the nonlinear term ηpηx in the equation is converted into a linear term. Unknown functions of BBM-KdV equation is approximated by the barycentric interpolation basis function. The matrix equation of the generalized BBM-KdV equation is obtained by discretized the generalized BBM-KdV equation in the space-time domain, and the convergence analysis is carried out. The effectiveness and numerical accuracy of the barycentric interpolation collocation method is verified by numerical example, and the calculation accuracy can reach the order of 10-8.

Key words: small-amplitude long-wave, generalized BBM-KdV equation, barycentric interpolation, collocation method

中图分类号: 

  • O241

表1

两类配点法分别取不同类型节点计算的最大绝对误差(x ∈ [-10, 10], t ∈ [0, 10], α=00.05)"

m×n $ E_{\mathrm{r} \text { max }}^{\mathrm{c}}$ $ E_{\mathrm{r} \text { max }}^{\mathrm{d}}$ $ E_{\mathrm{l} \text { max }}^{\mathrm{c}}$ $ E_{\mathrm{l} \text { max }}^{\mathrm{d}}$ p
15×10 4.000 2×10-11 1.576 8×10-10 2.553 6×10-13 1.815 1×10-12
15×20 2.591 3×10-12 1.789 5×10-11 5.999 5×10-14 7.877 6×10-12 1
25×20 1.220 4×10-15 3.236 9×10-12 1.648 0×10-16 7.270 3×10-09
15×10 7.066 4×10-11 2.966 8×10-10 2.445 5×10-13 1.235 5×10-12
15×20 2.653 5×10-12 1.954 0×10-11 3.816 4×10-14 1.203 2×10-10 3
25×20 1.815 2×10-14 7.216 8×10-11 4.052 3×10-15 3.418 9×10-08

表2

两类配点法分别取不同时空域计算的最大绝对误差和相对误差(a=0.05, p=3, mn=45×30)"

空间域 时间域 Er maxc El maxc Rrerc Rlerc
[-10, 10] [0, 10] 4.053 2×10-12 1.458 6×10-14 4.249 2×10-12 2.169 1×10-14
[0, 15] 4.976 1×10-12 1.136 6×10-14 4.858 0×10-12 1.913 8×10-14
[0, 20] 4.405 3×10-12 9.756 1×10-15 3.231 7×10-12 1.747 2×10-14
[0, 25] 2.716 6×10-12 6.800 1×10-15 2.679 5×10-12 1.569 5×10-14
[0, 30] 2.655 5×10-12 6.966 6×10-15 2.426 5×10-12 1.108 4×10-14
[-20, 20][0, 10] 3.365 1×10-12 1.038 1×10-14 4.559 9×10-12 2.045 1×10-14
[0, 15] 2.632 0×10-12 9.131 6×10-15 2.431 4×10-12 1.879 2×10-14
[0, 20] 8.674 5×10-12 1.013 1×10-14 1.037 9×10-11 1.822 8×10-14
[0, 25] 3.724 0×10-12 9.992 0×10-15 5.183 6×10-12 2.275 2×10-14
[0, 30] 3.742 9×10-12 7.993 6×10-15 4.067 0×10-12 1.663 0×10-14
[-30, 30][0, 10] 1.959 0×10-12 1.755 5×10-14 2.696 9×10-12 2.863 9×10-14
[0, 15] 2.061 0×10-12 7.875 6×10-15 2.231 7×10-12 1.856 6×10-14
[0, 20] 4.882 6×10-12 6.855 6×10-15 6.085 3×10-12 1.787 9×10-14
[0, 25] 4.124 1×10-12 7.841 0×10-15 5.690 9×10-12 1.616 8×10-14
[0, 30] 2.750 3×10-12 1.020 0×10-14 3.798 8×10-12 2.205 6×10-14

表3

两类配点法分别取不同数量节点计算的最大绝对误差(a=0.05, x ∈ [-30, 30], t ∈ [0, 10])"

m×n p=1 p=2 p=3
Er maxc El maxc Er maxc El maxc Ermaxc El maxc
35×25 3.774 8×10-14 5.665 6×10-15 2.602 1×10-14 3.934 4×10-15 1.317 8×10-13 9.839 4×10-15
40×25 1.026 4×10-14 3.024 9×10-16 2.691 0×10-13 3.840 7×10-15 6.600 6×10-13 6.633 6×10-15
45×25 5.688 7×10-14 4.651 2×10-16 4.350 8×10-13 6.272 8×10-15 1.329 8×10-12 1.404 4×10-14
50×25 6.026 3×10-13 2.958 8×10-16 6.728 9×10-12 3.639 4×10-15 1.286 3×10-11 1.280 9×10-14
45×35 1.617 2×10-13 1.234 9×10-15 8.871 1×10-13 1.030 1×10-14 3.281 0×10-12 2.771 4×10-14
45×40 2.527 6×10-13 1.298 0×10-15 1.876 9×10-12 1.202 9×10-14 4.171 4×10-12 3.194 7×10-14
45×45 1.968 2×10-13 1.708 7×10-15 5.312 9×10-12 1.731 9×10-14 1.563 3×10-11 4.436 7×10-14
45×50 2.228 7×10-12 1.855 7×10-15 1.023 2×10-11 1.806 9×10-14 2.992 7×10-11 3.834 4×10-14

图1

重心插值配点法的数值解与方程的孤波解"

图2

两类配点法的最大误差分布"

表4

取不同参数a、p时重心Lagrange插值配点法计算的最大绝对误差(mn=45×30)"

空间域 时间域 a=0.05, p=1 a=0.1, p=1 a=0.1, p=3
[-10, 10][0, 10] 6.539 9×10-16 2.302 0×10-15 2.861 6×10-14
[0, 15] 4.566 7×10-16 1.486 7×10-15 1.695 9×10-14
[0, 20] 3.937 8×10-16 7.580 7×10-16 9.478 5×10-15
[0, 25] 4.352 0×10-16 2.086 5×10-14 1.280 9×10-14
[0, 30] 2.693 2×10-16 6.853 5×10-13 1.099 4×10-13
[-20, 20][0, 10] 5.299 6×10-16 1.749 6×10-14 1.018 6×10-14
[0, 15] 3.987 7×10-16 1.673 3×10-14 1.342 7×10-14
[0, 20] 3.664 6×10-16 1.651 8×10-14 1.960 9×10-14
[0, 25] 4.098 3×10-16 3.007 0×10-14 1.046 4×10-14
[0, 30] 3.996 4×10-16 1.922 0×10-12 2.898 2×10-13
[-30, 30][0, 10] 6.844 6×10-16 2.202 7×10-10 3.639 3×10-11
[0, 15] 3.688 5×10-16 2.084 2×10-10 3.552 2×10-11
[0, 20] 2.797 2×10-16 2.072 4×10-10 3.464 8×10-11
[0, 25] 2.634 1×10-16 1.986 5×10-10 3.266 3×10-11
[0, 30] 4.006 7×10-16 1.819 3×10-10 3.087 1×10-11

图3

不同a、p时方程孤波解的性态"

表5

重心Lagrange插值配点法计算的最大绝对误差(a=0.3, p=1, x ∈ [-10, 10])"

m×n t∈[0, 10] t∈[0, 15] t∈[0, 20] t∈[0, 25] t∈[0, 30]
45×35 2.505 7×10-9 2.564 0×10-9 2.337 9×10-7 3.182 9×10-6 1.348 3×10-5
45×45 2.693 5×10-9 2.318 6×10-9 2.457 7×10-9 5.674 0×10-8 4.768 5×10-7
45×50 2.778 7×10-9 2.338 7×10-9 2.219 0×10-9 7.469 1×10-9 8.791 2×10-8
50×45 2.237 4×10-10 1.889 0×10-10 2.219 1×10-9 5.983 1×10-8 4.868 6×10-7
50×50 2.287 3×10-10 1.919 8×10-10 1.942 5×10-10 7.411 5×10-9 9.292 5×10-8
50×55 2.262 3×10-10 1.951 1×10-10 1.850 5×10-10 1.325 6×10-9 1.673 7×10-8
1 郑素佩,王令,王苗苗.求解二维浅水波方程的移动网格旋转通量法[J].应用数学和力学,2020,41(1):42-53.
ZHENGSupei,WANGLing,WANGMiaomiao.Solution of 2D shallow water wave equation with the moving grid rotating-invariance method[J].Applied Mathematics and Mechanis,2020,41(1):42-53.
2 樊荣,陈勋,郑克龙,等.浅水波方程的高精度隐式WCNS格式[J].应用力学学报,2021,38(4):1477-1484.
doi: 10.11776/cjam.38.04.A073
FANRong,CHENXun,ZHENGKelong,et al.High order implicit WCNS scheme for the shallow water equations[J].Chinese Journal of Applied Mechanics,2021,38(4):1477-1484.
doi: 10.11776/cjam.38.04.A073
3 刘会彩,李东方.扩展的(3+1)维浅水波方程的解析解[J].南昌大学学报(理科版),2022,46(3):309-313.
doi: 10.3969/j.issn.1006-0464.2022.03.004
LIUHuicai,LIDongfang.Analytical solutions of the extended (3+1)-dimensional shallow water wave equation[J].Journal of Nanchang University(Natural Science),2022,46(3):309-313.
doi: 10.3969/j.issn.1006-0464.2022.03.004
4 DUTYKHD,PELTNOVSKYE.Numerical simulation of a solitonic gas in KdV and KdV-BBM equations[J].Physics Letters A,2014,378(42):3102-3110.
doi: 10.1016/j.physleta.2014.09.008
5 ASOKANR,VINODHD.Soliton and exact solutions for the KdV-BBM type equations by tanh-coth and transformed rational function methods[J].International Journal of Applied and Computational Mathematics,2018,4,1-20.
6 CARVAJALX,PANTHEEM.On sharp global well-posedness and ill-posedness for a fifth-order KdV-BBM type equation[J].Mathematical Analysis and Applications,2019,479(1):688-702.
doi: 10.1016/j.jmaa.2019.06.045
7 ROUATBIA,OMRANIK.Two conservative difference schemes for a model of nonlinear dispersIve equations[J].Chaos Solitons Fractals,2017,104(9):516-530.
8 王希,傅浈,胡劲松.广义BBM-KdV方程的两种孤波解及其守恒律[J].西华大学学报(自然科学版),2021,40(6):109-112.
WANGXi,FUZhen,HUJinsong.Solitary wave solutions and conservation laws for the generalized BBM-KdV equation[J].Journal of Xihua University(Natural Science Edition),2021,40(6):109-112.
9 何丽,王希,胡劲松.广义BBM-KdV方程的一个守恒C-N差分格式[J].理论数学,2021,11(4):428-435.
HELi,WANGXi,HUJinsong.A conservative C-N difference scheme for the generalized BBM-KdV equation[J].Pure Mathematics,2021,11(4):428-435.
10 王希,张爽,胡劲松.求解广义BBM-KdV方程的守恒型有限差分方法[J].哈尔滨理工大学学报,2022,27(4):147-153.
WANGXi,ZHANGShuang,HUJinsong.Conservative finite difference method for solving generalized BBM-KdV equation[J].Journal of Harbin University of Science and Technology,2022,27(4):147-153.
11 王兆清,李淑萍.非线性问题的重心插值配点法[M].北京:国防工业出版社,2015.
WANGZhaoqing,LIShuping.Barycentric interpolation collocation method for nonlinear problems[M].Beijing:National Defense Industry Press,2015.
12 李树忱,王兆清.高精度无网格重心插值配点法: 算法、程序及工程应用[M].北京:科学出版社,2012.
LIShuchen,WANGZhaoqing.High precision barycentric interpolation collocation meshless method: algorithm, program and engineering application[M].Beijing:Science Press,2012.
13 王兆清,钱航,李金.移动边界问题的时空域正则区域迭代配点法[J].计算物理,2021,(1):16-24.
WANGZhaoqing,QIANHang,LIJin.Regular domain iterative collocation method in space-time region for moving boundary problems[J].Chinese Journal of Computational Physics,2021,(1):16-24.
14 王兆清,徐子康,李金.不可压缩平面问题的位移-压力混合重心插值配点法[J].应用力学学报,2018,35(3):631-636.
WANGZhaoqing,XUZikang,LIJin.Displacement-pressure mixed barycentric interpolation collocation method for incompressible plane problems[J].Chinese Journal of Applied Mechanics,2018,35(3):631-636.
15 李树忱,王兆清,袁超.极坐标系下弹性问题的重心插值配点法[J].中南大学学报(自然科学版),2013,44(5):2031-2040.
LIShuchen,WANGZhaoqing,YUANChao.Barycentric interpolation collocation method for solving elastic problems[J].Journal of Central South University(Science and Technology),2013,44(5):2031-2040.
16 王兆清,张磊,徐子康,等.平面弹性问题的位移-应力混合重心插值配点法[J].应用力学学报,2018,35(2):304-308.
WANGZhaoqing,ZHANGLei,XUZikang,et al.Displacement-pressure mixed barycentric interpolation collocation method for plane elastic problems[J].Chinese Journal of Applied Mechanics,2018,35(2):304-308.
17 王兆清,纪思源,徐子康,等.不规则区域平面弹性问题的正则区域重心插值配点法[J].计算力学学报,2018,35(2):195-201.
WANGZhaoqing,JISiyuan,XUZikang,et al.A regular domain collocation method based on barycentric interpolation for solving plane elastic problems in irregular domains[J].Chinese Journal of Applied Mechanics,2018,35(2):195-201.
18 LIJin,CHENGYongling.Numerical solution of Volterra integro-differential equations with linear barycentric rational method[J].International Journal of Applied and Computational Mathematics,2020,6(5):1-12.
19 LIJin,CHENGYongling.Linear barycentric rational collocation method for solving heat conduction equation[J].Numerical Methods for Partial Differential Equations,2020,37(1):533-545.
20 LIJin,SANGYu.Linear barycentric rational collocation method for beam force vibration equation[J].Shock and Vibration,2021,2021(2):1-11.
21 陈文兴,戴书洋,田小娟,等.利用重心有理插值配点法求解一、二维对流扩散方程[J].西南师范大学学报(自然科学版),2020,45(8):35-43.
CHENWenxing,DAIShuyang,TIANXiaojuan,et al.Barycentric rational interpolation collocation method is used to solve 1D and 2D convection-diffusion equations[J].Journal of Southwest China Normal University(Natural Science Edition),2020,45(8):35-43.
22 李继彬,周艳,庄锦森,等.非线性常微分方程基础[M].北京:科学出版社,2022.
LIJibin,ZHOUYan,ZHUANGJinsen,et al.Fundamentals of nonlinear ordinary differential equation[M].Beijing:Science Press,2022.
23 KORTEWEGD J,DEVRIES G.On the change in form of long waves advancing in rectangular canal and on a new type of long stationary waves[J].The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1895,240(9):422-443.
24 BENJAMINT B,BONAJ L,MAHONYJ J.Model equations for long waves in non-linear dispersive systems[J].Philosophical Transacions of the Royal Society London A,1972,272,47-78.
25 CAIJiaxiang,HONGQi,YANGBin.Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity[J].Chinese Physics B,2017,26(10):100202.
26 郑茂波,谭宁波.求解广义改进的KdV方程的守恒差分算法[J].四川大学学报(自然科学版),2017,54(4):688-692.
ZHENGMaobo,TANNingbo.Conservative difference scheme for general improved KdV equation[J].Journal of Sichuan University(Natural Science Edition),2017,54(4):688-692.
27 OMRANIK.The convergence of fully discrete Galerkin approximations for the Benjamin-Bona-Mahony (BBM) equation[J].Applied Mathematics and Computation,2006,180(2):614-621.
28 吕淑娟,张法勇.广义KdV-Burgers方程长时间性态的谱方法[J].计算数学,1999,21(2):129-138.
LÜShujuan,ZHANGFayong.The spectral method for long time behavior of generalized KdV-Burgers equation[J].Mathematica Numerica Sinica,1999,21(2):129-138.
[1] 屈金铮,李金,苏晓宁. 求解非线性伪抛物方程的重心Lagrange插值配点法[J]. 《山东大学学报(理学版)》, 2023, 58(4): 29-39.
[2] 王志刚 秦新强 党发宁 苏李君. 楔形基无网格法解的存在惟一性[J]. J4, 2010, 45(2): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王刚,许信顺*. 一种新的基于多示例学习的场景分类方法[J]. J4, 2010, 45(7): 108 -113 .
[2] 陆玮洁,主沉浮,宋 翠,杨艳丽 . 中药郁金中无机离子的毛细管电泳法测定[J]. J4, 2007, 42(7): 13 -18 .
[3] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[4] 王 瑶,刘 建,王仁卿,* . 阿利效应及其对生物入侵和自然保护中小种群管理的启示[J]. J4, 2007, 42(1): 76 -82 .
[5] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[6] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[7] 韩亚飞,伊文慧,王文波,王延平,王华田*. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49(05): 1 -6 .
[8] 解树涛,宋晓妍,石梅,陈秀兰,孙彩云,张玉忠* . 康宁木霉(Trichoderma koningii)SMF2分泌的peptaibols类抗菌肽Trichokonins抑菌活性研究[J]. J4, 2006, 41(6): 140 -144 .
[9] 刘保仓,史开泉 . S-粗集的信度特征[J]. J4, 2006, 41(5): 26 -29 .
[10] 李慧娟,尹海英,张学成,杨爱芳* . 转蔗糖: 蔗糖-1-果糖基转移酶基因提高烟草的耐旱性[J]. J4, 2007, 42(1): 89 -94 .