《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 67-76.doi: 10.6040/j.issn.1671-9352.0.2023.341
Xiumin LYU1(),Qian GE2,*(),Jin LI2
摘要:
应用重心插值配点法求解小振幅长波格式下的广义Benjamin-Bona-Mahony(BBM)-Korteweg-de Vries(KdV)方程。针对方程中的非线性项ηpηx,采用直接线性化方法将其转化为线性项。利用重心插值基函数构造方程未知函数的近似函数,建立时空域上重心插值配点法离散广义BBM-KdV方程的矩阵方程,并进行了收敛性分析。数值算例验证了重心插值配点法求解广义BBM-KdV方程的有效性和数值计算精度,其计算精度可达到10-8量级。
中图分类号:
1 | 郑素佩,王令,王苗苗.求解二维浅水波方程的移动网格旋转通量法[J].应用数学和力学,2020,41(1):42-53. |
ZHENGSupei,WANGLing,WANGMiaomiao.Solution of 2D shallow water wave equation with the moving grid rotating-invariance method[J].Applied Mathematics and Mechanis,2020,41(1):42-53. | |
2 |
樊荣,陈勋,郑克龙,等.浅水波方程的高精度隐式WCNS格式[J].应用力学学报,2021,38(4):1477-1484.
doi: 10.11776/cjam.38.04.A073 |
FANRong,CHENXun,ZHENGKelong,et al.High order implicit WCNS scheme for the shallow water equations[J].Chinese Journal of Applied Mechanics,2021,38(4):1477-1484.
doi: 10.11776/cjam.38.04.A073 |
|
3 |
刘会彩,李东方.扩展的(3+1)维浅水波方程的解析解[J].南昌大学学报(理科版),2022,46(3):309-313.
doi: 10.3969/j.issn.1006-0464.2022.03.004 |
LIUHuicai,LIDongfang.Analytical solutions of the extended (3+1)-dimensional shallow water wave equation[J].Journal of Nanchang University(Natural Science),2022,46(3):309-313.
doi: 10.3969/j.issn.1006-0464.2022.03.004 |
|
4 |
DUTYKHD,PELTNOVSKYE.Numerical simulation of a solitonic gas in KdV and KdV-BBM equations[J].Physics Letters A,2014,378(42):3102-3110.
doi: 10.1016/j.physleta.2014.09.008 |
5 | ASOKANR,VINODHD.Soliton and exact solutions for the KdV-BBM type equations by tanh-coth and transformed rational function methods[J].International Journal of Applied and Computational Mathematics,2018,4,1-20. |
6 |
CARVAJALX,PANTHEEM.On sharp global well-posedness and ill-posedness for a fifth-order KdV-BBM type equation[J].Mathematical Analysis and Applications,2019,479(1):688-702.
doi: 10.1016/j.jmaa.2019.06.045 |
7 | ROUATBIA,OMRANIK.Two conservative difference schemes for a model of nonlinear dispersIve equations[J].Chaos Solitons Fractals,2017,104(9):516-530. |
8 | 王希,傅浈,胡劲松.广义BBM-KdV方程的两种孤波解及其守恒律[J].西华大学学报(自然科学版),2021,40(6):109-112. |
WANGXi,FUZhen,HUJinsong.Solitary wave solutions and conservation laws for the generalized BBM-KdV equation[J].Journal of Xihua University(Natural Science Edition),2021,40(6):109-112. | |
9 | 何丽,王希,胡劲松.广义BBM-KdV方程的一个守恒C-N差分格式[J].理论数学,2021,11(4):428-435. |
HELi,WANGXi,HUJinsong.A conservative C-N difference scheme for the generalized BBM-KdV equation[J].Pure Mathematics,2021,11(4):428-435. | |
10 | 王希,张爽,胡劲松.求解广义BBM-KdV方程的守恒型有限差分方法[J].哈尔滨理工大学学报,2022,27(4):147-153. |
WANGXi,ZHANGShuang,HUJinsong.Conservative finite difference method for solving generalized BBM-KdV equation[J].Journal of Harbin University of Science and Technology,2022,27(4):147-153. | |
11 | 王兆清,李淑萍.非线性问题的重心插值配点法[M].北京:国防工业出版社,2015. |
WANGZhaoqing,LIShuping.Barycentric interpolation collocation method for nonlinear problems[M].Beijing:National Defense Industry Press,2015. | |
12 | 李树忱,王兆清.高精度无网格重心插值配点法: 算法、程序及工程应用[M].北京:科学出版社,2012. |
LIShuchen,WANGZhaoqing.High precision barycentric interpolation collocation meshless method: algorithm, program and engineering application[M].Beijing:Science Press,2012. | |
13 | 王兆清,钱航,李金.移动边界问题的时空域正则区域迭代配点法[J].计算物理,2021,(1):16-24. |
WANGZhaoqing,QIANHang,LIJin.Regular domain iterative collocation method in space-time region for moving boundary problems[J].Chinese Journal of Computational Physics,2021,(1):16-24. | |
14 | 王兆清,徐子康,李金.不可压缩平面问题的位移-压力混合重心插值配点法[J].应用力学学报,2018,35(3):631-636. |
WANGZhaoqing,XUZikang,LIJin.Displacement-pressure mixed barycentric interpolation collocation method for incompressible plane problems[J].Chinese Journal of Applied Mechanics,2018,35(3):631-636. | |
15 | 李树忱,王兆清,袁超.极坐标系下弹性问题的重心插值配点法[J].中南大学学报(自然科学版),2013,44(5):2031-2040. |
LIShuchen,WANGZhaoqing,YUANChao.Barycentric interpolation collocation method for solving elastic problems[J].Journal of Central South University(Science and Technology),2013,44(5):2031-2040. | |
16 | 王兆清,张磊,徐子康,等.平面弹性问题的位移-应力混合重心插值配点法[J].应用力学学报,2018,35(2):304-308. |
WANGZhaoqing,ZHANGLei,XUZikang,et al.Displacement-pressure mixed barycentric interpolation collocation method for plane elastic problems[J].Chinese Journal of Applied Mechanics,2018,35(2):304-308. | |
17 | 王兆清,纪思源,徐子康,等.不规则区域平面弹性问题的正则区域重心插值配点法[J].计算力学学报,2018,35(2):195-201. |
WANGZhaoqing,JISiyuan,XUZikang,et al.A regular domain collocation method based on barycentric interpolation for solving plane elastic problems in irregular domains[J].Chinese Journal of Applied Mechanics,2018,35(2):195-201. | |
18 | LIJin,CHENGYongling.Numerical solution of Volterra integro-differential equations with linear barycentric rational method[J].International Journal of Applied and Computational Mathematics,2020,6(5):1-12. |
19 | LIJin,CHENGYongling.Linear barycentric rational collocation method for solving heat conduction equation[J].Numerical Methods for Partial Differential Equations,2020,37(1):533-545. |
20 | LIJin,SANGYu.Linear barycentric rational collocation method for beam force vibration equation[J].Shock and Vibration,2021,2021(2):1-11. |
21 | 陈文兴,戴书洋,田小娟,等.利用重心有理插值配点法求解一、二维对流扩散方程[J].西南师范大学学报(自然科学版),2020,45(8):35-43. |
CHENWenxing,DAIShuyang,TIANXiaojuan,et al.Barycentric rational interpolation collocation method is used to solve 1D and 2D convection-diffusion equations[J].Journal of Southwest China Normal University(Natural Science Edition),2020,45(8):35-43. | |
22 | 李继彬,周艳,庄锦森,等.非线性常微分方程基础[M].北京:科学出版社,2022. |
LIJibin,ZHOUYan,ZHUANGJinsen,et al.Fundamentals of nonlinear ordinary differential equation[M].Beijing:Science Press,2022. | |
23 | KORTEWEGD J,DEVRIES G.On the change in form of long waves advancing in rectangular canal and on a new type of long stationary waves[J].The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1895,240(9):422-443. |
24 | BENJAMINT B,BONAJ L,MAHONYJ J.Model equations for long waves in non-linear dispersive systems[J].Philosophical Transacions of the Royal Society London A,1972,272,47-78. |
25 | CAIJiaxiang,HONGQi,YANGBin.Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity[J].Chinese Physics B,2017,26(10):100202. |
26 | 郑茂波,谭宁波.求解广义改进的KdV方程的守恒差分算法[J].四川大学学报(自然科学版),2017,54(4):688-692. |
ZHENGMaobo,TANNingbo.Conservative difference scheme for general improved KdV equation[J].Journal of Sichuan University(Natural Science Edition),2017,54(4):688-692. | |
27 | OMRANIK.The convergence of fully discrete Galerkin approximations for the Benjamin-Bona-Mahony (BBM) equation[J].Applied Mathematics and Computation,2006,180(2):614-621. |
28 | 吕淑娟,张法勇.广义KdV-Burgers方程长时间性态的谱方法[J].计算数学,1999,21(2):129-138. |
LÜShujuan,ZHANGFayong.The spectral method for long time behavior of generalized KdV-Burgers equation[J].Mathematica Numerica Sinica,1999,21(2):129-138. |
[1] | 屈金铮,李金,苏晓宁. 求解非线性伪抛物方程的重心Lagrange插值配点法[J]. 《山东大学学报(理学版)》, 2023, 58(4): 29-39. |
[2] | 王志刚 秦新强 党发宁 苏李君. 楔形基无网格法解的存在惟一性[J]. J4, 2010, 45(2): 44-49. |
|