《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 56-66.doi: 10.6040/j.issn.1671-9352.0.2023.232
摘要:
考虑利用边界控制识别热传导方程中与温度相关的传热系数问题。基于最优控制理论, 将热传导方程参数反演问题转化为变分问题, 进而讨论了极小值的存在性以及必要条件, 最终利用能量模估计的方法, 在假设终端时刻较小的情况下, 证得极小值的唯一性和稳定性。
中图分类号:
1 |
MONTAMBAUXG.Generalized Stefan-Boltzmann law[J].Foundations of Physics,2018,48(4):395-410.
doi: 10.1007/s10701-018-0153-4 |
2 |
HÀOD N,HUONGB V,THANHP X,et al.Identification of nonlinear heat transfer laws from boundary observations[J].Applicable Analysis,2015,94(9):1784-1799.
doi: 10.1080/00036811.2014.948425 |
3 |
张泰年,曾剑.一类退化抛物型方程反问题的全变差正则化方法[J].宁夏大学学报(自然科学版),2017,38(4):317-321.
doi: 10.3969/j.issn.0253-2328.2017.04.001 |
ZHANGTainian,ZENGJian.Total variation regularization method for a class of inverse problems of degenerate parabolic equations[J].Journal of Ningxia University(Natural Science Edition),2017,38(4):317-321.
doi: 10.3969/j.issn.0253-2328.2017.04.001 |
|
4 | DA SILVAW B,DUTRAJ C S,KOPPERSCHIMIDTC E P,et al.Sequential particle filter estimation of a time-dependent heat transfer coefficient in a multidimensional nonlinear inverse heat conduction problem[J].Applied Mathematical Modelling,2021,89(P1):654-668. |
5 |
SUNShuangcheng.Simultaneous reconstruction of thermal boundary condition and physical properties of participating medium[J].International Journal of Thermal Sciences,2021,163,106853.
doi: 10.1016/j.ijthermalsci.2021.106853 |
6 | 韩波,李莉.非线性不适定问题的求解方法及其应用[M].北京:科学出版社,2011. |
HANBo,LILi.Methods for solving nonlinear ill-posed problems and their applications[M].Beijing:Science Press,2011. | |
7 | 许瑶瑶,杨柳.非线性-积分抛物型方程零阶项的识别问题[J].兰州交通大学学报,2022,41(6):121-126. |
XUYaoyao,YANGLiu.Identification of zero-order terms for nonlinear-integral parabolic equations[J].Journal of Lanzhou Jiaotong University,2022,41(6):121-126. | |
8 |
IVANOVV P,TABALIND D.On a deterministic terminal control method with predictive forecasting of mismatches in the boundary conditions[J].Automation and Remote Control,2022,83(1):62-77.
doi: 10.1134/S0005117922010052 |
9 |
YIMAMUYilihamujiang,DENGZuicha,YANGLiu.An inverse volatility problem in a degenerate parabolic equation in a bounded domain[J].AIMS Mathematics,2022,7(10):19237-19266.
doi: 10.3934/math.20221056 |
10 |
WANGGuangjun,WANShibin,CHENHong,et al.A double decentralized fuzzy inference method for estimating the time and space-dependent thermal boundary condition[J].International Journal of Heat and Mass Transfer,2017,109,302-311.
doi: 10.1016/j.ijheatmasstransfer.2017.02.001 |
11 |
CHENHong,CAODongmin,WANGGuangjun,et al.Fuzzy estimation for unknown boundary shape of fluid-solid conjugate heat transfer problem[J].International Journal of Thermal Sciences,2016,106,112-121.
doi: 10.1016/j.ijthermalsci.2016.03.014 |
12 |
WENShuang,QIHong,LIYang,et al.An on-line extended Kalman filtering technique for reconstructing the transient heat flux and temperature field in two-dimensional participating media[J].International Journalof Thermal Sciences,2020,148,106069.
doi: 10.1016/j.ijthermalsci.2019.106069 |
13 | 姜礼尚,陈亚浙,刘西垣,等.数学物理方程讲义[M].北京:高等教育出版社,2007. |
JIANGLishang,CHENYazhe,LIUXiyuan,et al.Lecture notes on mathematical physics equations[M].Beijing:Higher Education Press,2007. | |
14 |
RAYMONDJ P,ZIDANIH.Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations[J].Applied Mathematics and Optimization,1999,39(2):143-177.
doi: 10.1007/s002459900102 |
15 | YIMAMUYilihamujiang.Determining the volatility in option pricing from degenerate parabolic equation[J].WSEAS Transactions on Mathematics,2022,21(73):629-634. |
16 |
甄苇苇,曾剑,任建龙.基于变分理论与时间相关的抛物型反源问题[J].山东大学学报(理学版),2018,53(10):61-71.
doi: 10.6040/j.issn.1671-9352.0.2018.093 |
ZHENWeiwei,ZENGJian,RENJianlong.Time-dependent parabolic inverse source problem based on variational theory[J].Journal of Shandong University (Natural Science),2018,53(10):61-71.
doi: 10.6040/j.issn.1671-9352.0.2018.093 |
|
17 | 郑秀娟,雒志学,张昊.基于尺度结构的非线性竞争种群的最优控制[J].山东大学学报(理学版),2021,56(11):51-60. |
ZHENGXiujuan,LUOZhixue,ZHANGHao.Optimal control of nonlinear competitive population based on scale structure[J].Journal of Shandong University (Natural Science),2021,56(11):51-60. | |
18 | 徐承蒙. 各向异性分数阶Sobolev空间及其性质[D]. 天津: 南开大学, 2022. |
XU Chengmeng. Anisotropic fractional Sobolev space and its properties[D]. Tianjin: Nankai University, 2022. | |
19 | TOURNB A,HOSTOSJ C Á,FACHINOTTIV D.A modified sequential gradient-based method for the inverse estimation of transient heat transfer coefficients in non-linear one-dimensional heat conduction problems[J].International Communications in Heat and Mass Transfer,2021,127,105488. |
20 | ONYANGOT T M,INGHAMD B,LESNICD.Reconstruction of boundary condition laws in heat conduction using the boundary element method[J].Computers & Mathematics with Applications,2009,57(1):153-168. |
21 | CHOULLIM.On the determination of an unknown boundary function in a parabolic equation[J].Inverse Problems,1999,15(3):659-667. |
[1] | 王晓,刘重阳,胡电中,刘刚. 1,3-丙二醇间歇发酵中的时滞最优控制[J]. 《山东大学学报(理学版)》, 2024, 59(1): 124-131, 138. |
[2] | 刘浩东,张驰. 连续时间框架下带名义利率零下限约束的最优货币政策[J]. 《山东大学学报(理学版)》, 2024, 59(1): 11-16. |
[3] | 祁慧敏,雒志学. 具有年龄结构的周期种群动力系统的最优控制[J]. 《山东大学学报(理学版)》, 2023, 58(5): 46-52. |
[4] | 杜芳芳,孙同军. 抛物型最优控制问题的三次B样条有限元方法[J]. 《山东大学学报(理学版)》, 2023, 58(4): 40-48. |
[5] | 李娜,雒志学. 基于扩散和尺度结构竞争种群模型的最优控制[J]. 《山东大学学报(理学版)》, 2022, 57(1): 69-76. |
[6] | 代丽芳,梁茂林,冉延平. 一类张量特征值反问题的可解性条件[J]. 《山东大学学报(理学版)》, 2021, 56(6): 95-102. |
[7] | 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91. |
[8] | 郑秀娟,雒志学,张昊. 基于尺度结构的非线性竞争种群的最优控制[J]. 《山东大学学报(理学版)》, 2021, 56(11): 51-60. |
[9] | 徐阳,赵春. 基于等级结构的竞争种群系统的最优控制问题[J]. 《山东大学学报(理学版)》, 2021, 56(11): 61-70. |
[10] | 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121. |
[11] | 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32. |
[12] | 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83-90. |
[13] | 梁丽宇,雒志学. 周期环境中具有尺度结构的两种群系统的最优控制[J]. 《山东大学学报(理学版)》, 2019, 54(9): 69-75. |
[14] | 孙奕欣,魏广生. 已知部分势函数的AKNS算子的逆谱问题[J]. 《山东大学学报(理学版)》, 2019, 54(8): 50-54. |
[15] | 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20. |
|