您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 56-66.doi: 10.6040/j.issn.1671-9352.0.2023.232

•   • 上一篇    下一篇

热传导方程的非线性传热定律识别问题

杜乐(),杨柳*(),张涛   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 收稿日期:2023-05-24 出版日期:2024-08-20 发布日期:2024-07-31
  • 通讯作者: 杨柳 E-mail:l_du1678@163.com;l_yang218@163.com
  • 作者简介:杜乐(1997—), 男, 硕士研究生, 研究方向为数学物理反问题. E-mail: l_du1678@163.com
  • 基金资助:
    国家自然科学基金资助项目(61663018);国家自然科学基金资助项目(11961042);甘肃省自然科学基金资助项目(22JR5RA341)

Identification of nonlinear heat transfer law of heat conduction equation

Le DU(),Liu YANG*(),Tao ZHANG   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Received:2023-05-24 Online:2024-08-20 Published:2024-07-31
  • Contact: Liu YANG E-mail:l_du1678@163.com;l_yang218@163.com

摘要:

考虑利用边界控制识别热传导方程中与温度相关的传热系数问题。基于最优控制理论, 将热传导方程参数反演问题转化为变分问题, 进而讨论了极小值的存在性以及必要条件, 最终利用能量模估计的方法, 在假设终端时刻较小的情况下, 证得极小值的唯一性和稳定性。

关键词: 热传导方程, 反问题, 非线性传热定律, 非线性边界, 最优控制

Abstract:

The identification of temperature-dependent heat transfer coefficients in heat conduction equations by boundary control is considered. Based on the optimal control theory, the general heat conduction equation parameter inversion problem is transformed into a variational problem, and then the existence and necessary conditions of the minimum value are discussed. Finally, by using the energy norm estimation method, the uniqueness and stability of the minimum value are proved under the assumption that the terminal time is small.

Key words: heat conduction equation, inverse problem, nonlinear heat transfer law, nonlinear boundary, optimal control

中图分类号: 

  • O175.26
1 MONTAMBAUXG.Generalized Stefan-Boltzmann law[J].Foundations of Physics,2018,48(4):395-410.
doi: 10.1007/s10701-018-0153-4
2 HÀOD N,HUONGB V,THANHP X,et al.Identification of nonlinear heat transfer laws from boundary observations[J].Applicable Analysis,2015,94(9):1784-1799.
doi: 10.1080/00036811.2014.948425
3 张泰年,曾剑.一类退化抛物型方程反问题的全变差正则化方法[J].宁夏大学学报(自然科学版),2017,38(4):317-321.
doi: 10.3969/j.issn.0253-2328.2017.04.001
ZHANGTainian,ZENGJian.Total variation regularization method for a class of inverse problems of degenerate parabolic equations[J].Journal of Ningxia University(Natural Science Edition),2017,38(4):317-321.
doi: 10.3969/j.issn.0253-2328.2017.04.001
4 DA SILVAW B,DUTRAJ C S,KOPPERSCHIMIDTC E P,et al.Sequential particle filter estimation of a time-dependent heat transfer coefficient in a multidimensional nonlinear inverse heat conduction problem[J].Applied Mathematical Modelling,2021,89(P1):654-668.
5 SUNShuangcheng.Simultaneous reconstruction of thermal boundary condition and physical properties of participating medium[J].International Journal of Thermal Sciences,2021,163,106853.
doi: 10.1016/j.ijthermalsci.2021.106853
6 韩波,李莉.非线性不适定问题的求解方法及其应用[M].北京:科学出版社,2011.
HANBo,LILi.Methods for solving nonlinear ill-posed problems and their applications[M].Beijing:Science Press,2011.
7 许瑶瑶,杨柳.非线性-积分抛物型方程零阶项的识别问题[J].兰州交通大学学报,2022,41(6):121-126.
XUYaoyao,YANGLiu.Identification of zero-order terms for nonlinear-integral parabolic equations[J].Journal of Lanzhou Jiaotong University,2022,41(6):121-126.
8 IVANOVV P,TABALIND D.On a deterministic terminal control method with predictive forecasting of mismatches in the boundary conditions[J].Automation and Remote Control,2022,83(1):62-77.
doi: 10.1134/S0005117922010052
9 YIMAMUYilihamujiang,DENGZuicha,YANGLiu.An inverse volatility problem in a degenerate parabolic equation in a bounded domain[J].AIMS Mathematics,2022,7(10):19237-19266.
doi: 10.3934/math.20221056
10 WANGGuangjun,WANShibin,CHENHong,et al.A double decentralized fuzzy inference method for estimating the time and space-dependent thermal boundary condition[J].International Journal of Heat and Mass Transfer,2017,109,302-311.
doi: 10.1016/j.ijheatmasstransfer.2017.02.001
11 CHENHong,CAODongmin,WANGGuangjun,et al.Fuzzy estimation for unknown boundary shape of fluid-solid conjugate heat transfer problem[J].International Journal of Thermal Sciences,2016,106,112-121.
doi: 10.1016/j.ijthermalsci.2016.03.014
12 WENShuang,QIHong,LIYang,et al.An on-line extended Kalman filtering technique for reconstructing the transient heat flux and temperature field in two-dimensional participating media[J].International Journalof Thermal Sciences,2020,148,106069.
doi: 10.1016/j.ijthermalsci.2019.106069
13 姜礼尚,陈亚浙,刘西垣,等.数学物理方程讲义[M].北京:高等教育出版社,2007.
JIANGLishang,CHENYazhe,LIUXiyuan,et al.Lecture notes on mathematical physics equations[M].Beijing:Higher Education Press,2007.
14 RAYMONDJ P,ZIDANIH.Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations[J].Applied Mathematics and Optimization,1999,39(2):143-177.
doi: 10.1007/s002459900102
15 YIMAMUYilihamujiang.Determining the volatility in option pricing from degenerate parabolic equation[J].WSEAS Transactions on Mathematics,2022,21(73):629-634.
16 甄苇苇,曾剑,任建龙.基于变分理论与时间相关的抛物型反源问题[J].山东大学学报(理学版),2018,53(10):61-71.
doi: 10.6040/j.issn.1671-9352.0.2018.093
ZHENWeiwei,ZENGJian,RENJianlong.Time-dependent parabolic inverse source problem based on variational theory[J].Journal of Shandong University (Natural Science),2018,53(10):61-71.
doi: 10.6040/j.issn.1671-9352.0.2018.093
17 郑秀娟,雒志学,张昊.基于尺度结构的非线性竞争种群的最优控制[J].山东大学学报(理学版),2021,56(11):51-60.
ZHENGXiujuan,LUOZhixue,ZHANGHao.Optimal control of nonlinear competitive population based on scale structure[J].Journal of Shandong University (Natural Science),2021,56(11):51-60.
18 徐承蒙. 各向异性分数阶Sobolev空间及其性质[D]. 天津: 南开大学, 2022.
XU Chengmeng. Anisotropic fractional Sobolev space and its properties[D]. Tianjin: Nankai University, 2022.
19 TOURNB A,HOSTOSJ C Á,FACHINOTTIV D.A modified sequential gradient-based method for the inverse estimation of transient heat transfer coefficients in non-linear one-dimensional heat conduction problems[J].International Communications in Heat and Mass Transfer,2021,127,105488.
20 ONYANGOT T M,INGHAMD B,LESNICD.Reconstruction of boundary condition laws in heat conduction using the boundary element method[J].Computers & Mathematics with Applications,2009,57(1):153-168.
21 CHOULLIM.On the determination of an unknown boundary function in a parabolic equation[J].Inverse Problems,1999,15(3):659-667.
[1] 王晓,刘重阳,胡电中,刘刚. 1,3-丙二醇间歇发酵中的时滞最优控制[J]. 《山东大学学报(理学版)》, 2024, 59(1): 124-131, 138.
[2] 刘浩东,张驰. 连续时间框架下带名义利率零下限约束的最优货币政策[J]. 《山东大学学报(理学版)》, 2024, 59(1): 11-16.
[3] 祁慧敏,雒志学. 具有年龄结构的周期种群动力系统的最优控制[J]. 《山东大学学报(理学版)》, 2023, 58(5): 46-52.
[4] 杜芳芳,孙同军. 抛物型最优控制问题的三次B样条有限元方法[J]. 《山东大学学报(理学版)》, 2023, 58(4): 40-48.
[5] 李娜,雒志学. 基于扩散和尺度结构竞争种群模型的最优控制[J]. 《山东大学学报(理学版)》, 2022, 57(1): 69-76.
[6] 代丽芳,梁茂林,冉延平. 一类张量特征值反问题的可解性条件[J]. 《山东大学学报(理学版)》, 2021, 56(6): 95-102.
[7] 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91.
[8] 郑秀娟,雒志学,张昊. 基于尺度结构的非线性竞争种群的最优控制[J]. 《山东大学学报(理学版)》, 2021, 56(11): 51-60.
[9] 徐阳,赵春. 基于等级结构的竞争种群系统的最优控制问题[J]. 《山东大学学报(理学版)》, 2021, 56(11): 61-70.
[10] 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121.
[11] 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32.
[12] 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83-90.
[13] 梁丽宇,雒志学. 周期环境中具有尺度结构的两种群系统的最优控制[J]. 《山东大学学报(理学版)》, 2019, 54(9): 69-75.
[14] 孙奕欣,魏广生. 已知部分势函数的AKNS算子的逆谱问题[J]. 《山东大学学报(理学版)》, 2019, 54(8): 50-54.
[15] 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 琦,赵秀恒,李国君 . 超图在树环中的嵌入问题[J]. J4, 2007, 42(10): 114 -117 .
[2] 刘建亚,展 涛 . 二次Waring-Goldbach问题[J]. J4, 2007, 42(2): 1 -18 .
[3] 刘婷婷,陈志勇,李晓琴*,杨文志. 随机变量序列的Berry-Esseen界[J]. 山东大学学报(理学版), 2014, 49(03): 101 -106 .
[4] 李世龙,张云峰 . 一类基于算术均差商的有理三次插值样条的逼近性质[J]. J4, 2007, 42(10): 106 -110 .
[5] 邱桃荣,王璐,熊树洁,白小明. 一种基于粒计算的知识隐藏方法[J]. J4, 2010, 45(7): 60 -64 .
[6] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65 -71 .
[7] 刘纪芹, . 双枝模糊集并-表现定理[J]. J4, 2006, 41(2): 7 -13 .
[8] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[9] 马媛媛, 孟慧丽, 徐久成, 朱玛. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(08): 107 -110 .
[10] 丰 晓,张顺华 . τ-平坦试验模与τ-平坦覆盖[J]. J4, 2007, 42(1): 31 -34 .