您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (1): 11-16.doi: 10.6040/j.issn.1671-9352.0.2023.148

•   • 上一篇    下一篇

连续时间框架下带名义利率零下限约束的最优货币政策

刘浩东(),张驰   

  1. 中国海洋大学经济学院, 山东 青岛 266100
  • 收稿日期:2023-04-12 出版日期:2024-01-20 发布日期:2024-01-19
  • 作者简介:刘浩东(1988—), 男, 讲师, 硕士生导师, 博士, 研究方向为随机控制. E-mail: liuhaodong@ouc.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12201593)

Optimal monetary policy with a zero lower bound on the nominal interest rate under a continuous-time framework

Haodong LIU(),Chi ZHANG   

  1. School of Economics, Ocean University of China, Qingdao 266100, Shandong, China
  • Received:2023-04-12 Online:2024-01-20 Published:2024-01-19

摘要:

利用正倒向随机微分方程, 建立连续时间框架下的新凯恩斯模型, 并将最优货币政策问题转化为带控制约束的随机最优控制问题。结合最大值原理, 得到最优货币政策的必要条件, 并刻画最优货币政策的特征。

关键词: 倒向随机微分方程, 随机最优控制, 货币政策

Abstract:

In this paper, we give the continuous time version of the New Keynesian model, which is a backward stochastic differential system and translate the optimal monetary policy problem into a stochastic optimal control problem under control constraints. By using the maximum principle for the control system, we obtain the necessary condition for the optimal monetary policy. Also we give the expression of the optimal monetary policy.

Key words: backward stochastic differential equation, stochastic optimal control, monetary policy

中图分类号: 

  • O231.3
1 WOODFORD M , WALSH C E . Interest and prices: foundations of a theory of monetary policy[J]. Macroeconomic Dynamics, 2005, 9 (3): 462- 468.
2 GALÍ J . Monetary policy, inflation, and the business cycle: an introduction to the new Keynesian framework[M]. Princeton: Princeton University Press, 2008.
3 CLARIDA R , GALÍ J , GERTLER M . The science of monetary policy: a new Keynesian perspective[J]. Journal of Economic Literature, 1999, 37 (4): 1661- 1707.
doi: 10.1257/jel.37.4.1661
4 ADAM K , BILLI R M . Optimal monetary policy under commitment with a zero bound on nominal interest rates[J]. Journal of Money, Credit and Banking, 2006, 1877- 1905.
5 GABAIX X . A behavioral new Keynesian model[J]. American Economic Review, 2020, 110 (8): 2271- 2327.
doi: 10.1257/aer.20162005
6 SCHMIDT S . Optimal monetary and fiscal policy with a zero bound on nominal interest rates[J]. Journal of Money, Credit and Banking, 2013, 45 (7): 1335- 1350.
doi: 10.1111/jmcb.12054
7 WERNING I. Managing a liquidity trap: monetary and fiscal policy[R]. [S. l. ]: National Bureau of Economic Research, 2011.
8 HU Mingshang , JI Shaolin , XU Rundong . A local stochastic maximum principle for forward-backward stochastic control systems with quadratic generators[J]. SIAM Journal on Control and Optimization, 2022, 60 (3): 1791- 1818.
doi: 10.1137/20M137238X
9 HU Mingshang , JI Shaolin , XUE Xiaole . A global stochastic maximum principle for fully coupled forward-backward stochastic systems[J]. SIAM Journal on Control and Optimization, 2018, 56 (6): 4309- 4335.
doi: 10.1137/18M1179547
10 HUANG Jianhui , WANG Shujun , WU Zhen . Backward-forward linear-quadratic mean-field games with major and minor agents[J]. Probability, Uncertainty and Quantitative Risk, 2016, 1, 8.
doi: 10.1186/s41546-016-0009-9
11 PENG Shige , SHI Yufeng . Infinite horizon forward-backward stochastic differential equations[J]. Stochastic Processes and Their Applications, 2000, 85 (1): 75- 92.
doi: 10.1016/S0304-4149(99)00066-6
12 HU Ying , SHI Xiaomin , XU Zuoquan . Constrained stochastic LQ control on infinite time horizon with regime switching[J]. ESAIM: Control, Optimisation and Calculus of Variations, 2022, 28, 5.
doi: 10.1051/cocv/2021110
13 HU Ying , TANG Shanjian . Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs[J]. Probability, Uncertainty and Quantitative Risk, 2019, 4, 1.
doi: 10.1186/s41546-018-0035-x
14 AGRAM N , ØKSENDAL B . Infinite horizon optimal control of forward-backward stochastic differential equations with delay[J]. Journal of Computational and Applied Mathematics, 2014, 259, 336- 349.
doi: 10.1016/j.cam.2013.04.048
15 WOODFORD M. Control of the public debt: a requirement for price stability?[C]//The Debt Burden and its Consequences for Monetary Policy: Proceedings of a Conference Held by the International Economic Association at the Deutsche Bundesbank, London: Palgrave Macmillan UK, 1998: 117-158.
16 PENG S G . Backward stochastic differential equations and applications to optimal control[J]. Applied Mathematics and Optimization, 1993, 27 (2): 125- 144.
doi: 10.1007/BF01195978
[1] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[2] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[3] 聂天洋,史敬涛. 完全耦合正倒向随机控制系统的动态规划原理与最大值原理之间的联系[J]. 山东大学学报(理学版), 2016, 51(5): 121-129.
[4] 方瑞, 马娇娇, 范胜君. 一类倒向随机微分方程解的稳定性定理[J]. 山东大学学报(理学版), 2015, 50(06): 39-44.
[5] 郑石秋,冯立超,刘秋梅. 系数连续的反射倒向随机微分方程的#br# 表示定理与逆比较定理[J]. 山东大学学报(理学版), 2014, 49(03): 107-110.
[6] 许晓明. 超前倒向随机微分方程的反射解及相应的最优停止问题[J]. J4, 2013, 48(6): 14-17.
[7] 孟祥波1,张立东1*,杜子平2. 随机利率下保险公司最优保费策略[J]. J4, 2013, 48(3): 106-110.
[8] 孙启良,张启侠*. 随机H2/H∞控制的最大值原理方法[J]. J4, 2013, 48(09): 90-95.
[9] 石学军1,江龙2*. 连续生成元的一维反射倒向随机微分方程的Lp-解[J]. J4, 2012, 47(11): 119-126.
[10] 王艳彬,范胜君*,李微微,张靖芝. 生成元为左Lipschitz的倒向随机微分方程最大解的Levi型定理[J]. J4, 2011, 46(7): 92-95.
[11] 吕文1,2. 具有随机Lipschitz系数的反射倒向随机微分方程[J]. J4, 2011, 46(6): 79-83.
[12] 郑石秋1,刘玉春2,郑春华3. 关于双障碍RBSDEs解K+与K-的一点注记[J]. J4, 2011, 46(3): 112-115.
[13] 张慧1,2,孟纹羽1,来翔3. 不确定环境下障碍再装期权的动态定价模型
——基于BSDE解的期权定价方法
[J]. J4, 2011, 46(3): 52-57.
[14] 郑石秋1,徐峰2,焦琳3,孟宪瑞1. 双障碍反射型倒向随机微分方程生成元的表示定理及其应用[J]. J4, 2010, 45(8): 118-122.
[15] 陈丽. 超前BSDE中Z的性质及其在时滞随机控制中的应用[J]. J4, 2010, 45(4): 16-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 金黎明,杨 艳*,刘万顺,韩宝芹,田文杰,范圣第 . 壳寡糖及其衍生物对CCl4诱导的小鼠肝损伤的保护作用[J]. J4, 2007, 42(7): 1 -04 .
[2] 章东青,殷晓斌,高汉鹏. Quasi-线性Armendariz模[J]. 山东大学学报(理学版), 2016, 51(12): 1 -6 .
[3] 李亚男1,刘磊坡2,王玉光3. 非线性时滞输入系统的滑模控制[J]. J4, 2010, 45(6): 99 -104 .
[4] 张苏梅,马巧灵,赵海霞. 路与圈的积图的(d,1)全标号[J]. J4, 2009, 44(4): 37 -42 .
[5] 苏 祺,项 锟,孙 斌 . 基于链接聚类的Shark-Search算法[J]. J4, 2006, 41(3): 1 -04 .
[6] 曲晓英,赵 静 . 含时线性Klein-Gordon方程的解[J]. J4, 2007, 42(7): 22 -26 .
[7] 王光臣 . 部分可观测信息下的线性二次非零和随机微分对策[J]. J4, 2007, 42(6): 12 -15 .
[8] 李守巨1,上官子昌2,3,孙伟4,栾茂田1,刘博3. 盾构机密封舱渣土非线性本构模型参数识别[J]. J4, 2010, 45(7): 24 -27 .
[9] 袁彦莉 张兴芳. Gödel逻辑系统中公式条件概率真度的研究[J]. J4, 2009, 44(9): 70 -74 .
[10] 张申贵. 局部超线性p-基尔霍夫方程的多重解[J]. 山东大学学报(理学版), 2014, 49(05): 61 -68 .