《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (1): 11-16.doi: 10.6040/j.issn.1671-9352.0.2023.148
摘要:
利用正倒向随机微分方程, 建立连续时间框架下的新凯恩斯模型, 并将最优货币政策问题转化为带控制约束的随机最优控制问题。结合最大值原理, 得到最优货币政策的必要条件, 并刻画最优货币政策的特征。
中图分类号:
1 | WOODFORD M , WALSH C E . Interest and prices: foundations of a theory of monetary policy[J]. Macroeconomic Dynamics, 2005, 9 (3): 462- 468. |
2 | GALÍ J . Monetary policy, inflation, and the business cycle: an introduction to the new Keynesian framework[M]. Princeton: Princeton University Press, 2008. |
3 |
CLARIDA R , GALÍ J , GERTLER M . The science of monetary policy: a new Keynesian perspective[J]. Journal of Economic Literature, 1999, 37 (4): 1661- 1707.
doi: 10.1257/jel.37.4.1661 |
4 | ADAM K , BILLI R M . Optimal monetary policy under commitment with a zero bound on nominal interest rates[J]. Journal of Money, Credit and Banking, 2006, 1877- 1905. |
5 |
GABAIX X . A behavioral new Keynesian model[J]. American Economic Review, 2020, 110 (8): 2271- 2327.
doi: 10.1257/aer.20162005 |
6 |
SCHMIDT S . Optimal monetary and fiscal policy with a zero bound on nominal interest rates[J]. Journal of Money, Credit and Banking, 2013, 45 (7): 1335- 1350.
doi: 10.1111/jmcb.12054 |
7 | WERNING I. Managing a liquidity trap: monetary and fiscal policy[R]. [S. l. ]: National Bureau of Economic Research, 2011. |
8 |
HU Mingshang , JI Shaolin , XU Rundong . A local stochastic maximum principle for forward-backward stochastic control systems with quadratic generators[J]. SIAM Journal on Control and Optimization, 2022, 60 (3): 1791- 1818.
doi: 10.1137/20M137238X |
9 |
HU Mingshang , JI Shaolin , XUE Xiaole . A global stochastic maximum principle for fully coupled forward-backward stochastic systems[J]. SIAM Journal on Control and Optimization, 2018, 56 (6): 4309- 4335.
doi: 10.1137/18M1179547 |
10 |
HUANG Jianhui , WANG Shujun , WU Zhen . Backward-forward linear-quadratic mean-field games with major and minor agents[J]. Probability, Uncertainty and Quantitative Risk, 2016, 1, 8.
doi: 10.1186/s41546-016-0009-9 |
11 |
PENG Shige , SHI Yufeng . Infinite horizon forward-backward stochastic differential equations[J]. Stochastic Processes and Their Applications, 2000, 85 (1): 75- 92.
doi: 10.1016/S0304-4149(99)00066-6 |
12 |
HU Ying , SHI Xiaomin , XU Zuoquan . Constrained stochastic LQ control on infinite time horizon with regime switching[J]. ESAIM: Control, Optimisation and Calculus of Variations, 2022, 28, 5.
doi: 10.1051/cocv/2021110 |
13 |
HU Ying , TANG Shanjian . Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs[J]. Probability, Uncertainty and Quantitative Risk, 2019, 4, 1.
doi: 10.1186/s41546-018-0035-x |
14 |
AGRAM N , ØKSENDAL B . Infinite horizon optimal control of forward-backward stochastic differential equations with delay[J]. Journal of Computational and Applied Mathematics, 2014, 259, 336- 349.
doi: 10.1016/j.cam.2013.04.048 |
15 | WOODFORD M. Control of the public debt: a requirement for price stability?[C]//The Debt Burden and its Consequences for Monetary Policy: Proceedings of a Conference Held by the International Economic Association at the Deutsche Bundesbank, London: Palgrave Macmillan UK, 1998: 117-158. |
16 |
PENG S G . Backward stochastic differential equations and applications to optimal control[J]. Applied Mathematics and Optimization, 1993, 27 (2): 125- 144.
doi: 10.1007/BF01195978 |
[1] | 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41. |
[2] | 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54. |
[3] | 聂天洋,史敬涛. 完全耦合正倒向随机控制系统的动态规划原理与最大值原理之间的联系[J]. 山东大学学报(理学版), 2016, 51(5): 121-129. |
[4] | 方瑞, 马娇娇, 范胜君. 一类倒向随机微分方程解的稳定性定理[J]. 山东大学学报(理学版), 2015, 50(06): 39-44. |
[5] | 郑石秋,冯立超,刘秋梅. 系数连续的反射倒向随机微分方程的#br# 表示定理与逆比较定理[J]. 山东大学学报(理学版), 2014, 49(03): 107-110. |
[6] | 许晓明. 超前倒向随机微分方程的反射解及相应的最优停止问题[J]. J4, 2013, 48(6): 14-17. |
[7] | 孟祥波1,张立东1*,杜子平2. 随机利率下保险公司最优保费策略[J]. J4, 2013, 48(3): 106-110. |
[8] | 孙启良,张启侠*. 随机H2/H∞控制的最大值原理方法[J]. J4, 2013, 48(09): 90-95. |
[9] | 石学军1,江龙2*. 连续生成元的一维反射倒向随机微分方程的Lp-解[J]. J4, 2012, 47(11): 119-126. |
[10] | 王艳彬,范胜君*,李微微,张靖芝. 生成元为左Lipschitz的倒向随机微分方程最大解的Levi型定理[J]. J4, 2011, 46(7): 92-95. |
[11] | 吕文1,2. 具有随机Lipschitz系数的反射倒向随机微分方程[J]. J4, 2011, 46(6): 79-83. |
[12] | 郑石秋1,刘玉春2,郑春华3. 关于双障碍RBSDEs解K+与K-的一点注记[J]. J4, 2011, 46(3): 112-115. |
[13] | 张慧1,2,孟纹羽1,来翔3. 不确定环境下障碍再装期权的动态定价模型 ——基于BSDE解的期权定价方法[J]. J4, 2011, 46(3): 52-57. |
[14] | 郑石秋1,徐峰2,焦琳3,孟宪瑞1. 双障碍反射型倒向随机微分方程生成元的表示定理及其应用[J]. J4, 2010, 45(8): 118-122. |
[15] | 陈丽. 超前BSDE中Z的性质及其在时滞随机控制中的应用[J]. J4, 2010, 45(4): 16-20. |
|