您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 77-87.doi: 10.6040/j.issn.1671-9352.0.2023.439

• • 上一篇    下一篇

混合误差下一阶适度爆炸自回归模型最小二乘估计

段体城1,许成凯1,鲁紫婕1,贾沛焱2,谢素雅1,杨文志1*   

  1. 1.安徽大学大数据与统计学院, 安徽 合肥 230601;2.安徽大学文典学院, 安徽 合肥 230601
  • 发布日期:2025-03-10
  • 通讯作者: 杨文志(1982— ),男,副教授,博士,研究方向为概率论与数理统计. E-mail:wzyang@ahu.edu.cn
  • 作者简介:段体城(2000— ),男,硕士研究生,研究方向为概率论与数理统计. E-mail:duanticheng00@163.com*通信作者:杨文志(1982— ),男,副教授,博士,研究方向为概率论与数理统计. E-mail:wzyang@ahu.edu.cn
  • 基金资助:
    安徽省自然科学基金资助项目(2008085MA14);安徽大学大学生创新创业训练项目(202310357126)

Least squares estimator of the first-order and mildly explosive autoregression with mixing errors

DUAN Ticheng1, XU Chengkai1, LU Zijie1, JIA Peiyan2, XIE Suya1, YANG Wenzhi1*   

  1. 1. School of Big Data and Statistics, Anhui University, Hefei 230601, Anhui, China;
    2. Wendian College, Anhui University, Hefei 230601, Anhui, China
  • Published:2025-03-10

摘要: 基于误差是φ-混合序列,研究一阶适度爆炸自回归模型回归系数最小二乘(least squares, LS)估计问题。在误差满足弱条件E(u1)=0, E(|u1|4)<∞和φ(n)=O(n-8)时,获得回归系数最小二乘估计的极限分布——柯西分布。通过数据模拟得到的模拟结果与理论结果一致。作为应用,利用一阶适度爆炸模型和自回归系数区间估计,研究英伟达股票2013—2023年的股价增长过程。

关键词: 适度爆炸自回归, 最小二乘估计, 柯西分布, 混合序列

Abstract: The least squares(LS)estimator is studied for the first-order and mildly explosive autoregression with φ-mixing errors. Under some weak conditions of E(u1)=0, E(|u1|4)<∞ and φ(n)=O(n-8), the limit distribution of standard Cauchy distribution is obtained for the LS estimator. Some simulations are given, which agree with the theory results. As an application, the first-order mildly explosive model and autoregressive coefficient interval estimation are used to study the growth process of share price for the NVIDIA corporation common stock from 2013 to 2023.

Key words: mildly explosive autoregression, least squares estimator, Cauchy distribution, mixing sequence

中图分类号: 

  • O212.1
[1] WHITE J S. The limiting distribution of the serial correlation coefficient in the explosive case[J]. The Annals of Mathematical Statistics, 1958, 29(4):1188-1197.
[2] ANDERSON T W. On asymptotic distributions of estimates of parameters of stochastic difference equations[J]. The Annals of Mathematical Statistics, 1959, 30(3):676-687.
[3] PHILLIPS P C B, MAGDALINOS T. Limit theory for moderate deviations from a unit root[J]. Journal of Econometrics, 2007, 136(1):115-130.
[4] PHILLIPS P C B, MAGDALINOS T. Limit theory for moderate deviations from a unit root under weak dependence[M] //PHILLIPS G D A, TZAVALIS E. The Refinement of Econometric Estimation and Test Procedures: Finite Sample and Asymptotic Analysis. Cambridge: Cambridge University Press, 2007:123-162.
[5] MAGDALINOS T. Mildly explosive autoregression under weak and strong dependence[J]. Journal of Econometrics, 2012, 169(2):179-187.
[6] OH H, LEE S, CHAN N H. Mildly explosive autoregression with mixing innovations[J]. Journal of Korean Statistical Society, 2018, 47(1):41-53.
[7] 陆传荣,林正炎. 混合相依变量的极限理论[M]. 北京:科学出版社,1997:2-34. LU Chuanrong, LIN Zhengyan. Limit theory for mixing dependent random variables[M]. Beijing: Science Press, 1997:2-34.
[8] FAN Jianqing, YAO Qiwei. Nonlinear time series: nonparametric and parametric methods[M]. New York: Springer, 2003:67-74.
[9] 伍欣叶,吴群英. φ混合删失模型中密度函数K-M估计的r-阶相合速度[J]. 山东大学学报(理学版),2014,49(1):105-110. WU Xinye, WU Qunying. The r-th rate of consistency in kernel density estimation for φ mixed random censored samples[J]. Journal of Shandong University(Natural Science), 2014, 49(1):105-110.
[10] 邓小芹,吴群英. ρ混合序列完全矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2020, 55(6):32-40. DENG Xiaoqin, WU Qunying. Precise asymptotics of complete moment convergence for ρ-mixing sequence[J]. Journal of Shandong University(Natural Science), 2020, 55(6):32-40.
[11] AUE A, HORVÁTH L. A limit theorem for mildly explosive autoregression with stable errors[J]. Econometric Theory, 2007, 23(2):201-220.
[12] MAGDALINOS T, PHILLIPS P C B. Limit theory for cointegrated systems with moderately integrated and moderately explosive regressors[J]. Econometric Theory, 2009, 25(2):482-526.
[13] WANG Xinghui, WANG Huilong, WANG Hongrui, et al. Asymptotic inference of least absolute deviation estimation for AR(1)processes[J]. Communications in Statistics: Theory and Methods, 2020, 49(4):809-826.
[14] LUI Y L, XIAO W L, YU J. Mildly explosive autoregression with anti-persistent errors[J]. Oxford Bulletin of Economics and Statistics, 2021, 83(2):518-539.
[15] BUCHMANN B, CHAN N H. Asymptotic theory of least squares estimators for nearly unstable processes under strong dependence[J]. The Annals of Statistics, 2007, 35(5):2001-2017.
[16] CHAN N H, LI D, PENG L. Toward a unified interval estimation of autoregressions[J]. Econometric Theory, 2012, 28(3):705-717.
[17] KIMT Y, HWANG S Y. Barely-stationary AR(1)sequences near random walk[J]. Journal of the Korean Statistical Society, 2021, 50:832-843.
[18] KIM T Y, HWANG S Y, OH H. Explosive AR(1)process with independent but not identically distributed errors[J]. Journal of the Korean Statistical Society, 2020, 49(3):702-721.
[19] GAO Min, YANG Wenzhi, WU Shipeng, et al. Asymptotic normality of residual density estimator in stationary and explosive autoregressive models[J]. Computational Statistics & Data Analysis, 2022, 175:107549.
[20] ZHOU Jing, LIU Jin, WANG Feifei, et al. Autoregressive model with spatial dependence and missing data[J]. Journal of Business & Economic Statistics, 2022, 40(1):28-34.
[21] PHILLIPS P C B, WU Y R, YU J. Explosive behavior in the 1990s Nasdaq: when did exuberance escalate asset values? [J]. International Economic Review, 2011, 52(1):201-226.
[22] 李永明,尹长明,韦程东. φ混合误差下回归函数小波估计的渐近正态性[J]. 应用数学学报,2008,31(6):1046-1055. LI Yongming, YIN Changming, WEI Chengdong. On the asymptotic normality for φ-mixing dependent errors of wavelet regression function estimator[J]. Acta Mathematicae Applicatae Sinica, 2008, 31(6):1046-1055.
[23] 杨善朝. 混合序列加权和的强收敛性[J]. 系统科学与数学, 1995, 15(3):254-265. YANG Shanchao. Almost sure convergence of weighted sums of mixing sequences[J]. Journal of Systems Science and Mathematical Sciences, 1995, 15(3):254-265.
[24] DOUKHAN P, LOUHICHI S. A new weak dependence condition and applications to moment inequalities[J]. Stochastic Processes and their Applications, 1999, 84(2):313-342.
[1] 朱慧敏,王梓楠,高敏,杨文志. 方差变点模型CUSUM型估计量的相合性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 106-114.
[2] 张翠芸,郭精军,马爱琴. 基于离散观测的次分数Vasicek模型的参数估计[J]. 《山东大学学报(理学版)》, 2023, 58(11): 15-26.
[3] 张诗苗,吕艳. 带Lévy噪声的Lotka-Volterra竞争模型的参数估计[J]. 《山东大学学报(理学版)》, 2023, 58(10): 24-31.
[4] 邓小芹,吴群英. ρ-混合序列完全矩收敛的精确渐近性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 32-40.
[5] 张亚运,吴群英. ρ-混合序列的重对数律矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(4): 13-20.
[6] 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19.
[7] 伍欣叶,吴群英. 混合删失模型中密度函数K-M估计的r-阶相合速度[J]. 山东大学学报(理学版), 2014, 49(1): 105-110.
[8] 唐玲. φ混合序列滑动和过程回归模型的相合性[J]. J4, 2013, 48(3): 89-92.
[9] 刘谢进1, 缪柏其2. 平衡损失函数下Bayes线性无偏最小方差估计的优良性[J]. J4, 2011, 46(11): 89-95.
[10] 周小双1,2. 错误先验指定下Bayes估计与广义最小二乘估计的相对效率[J]. J4, 2010, 45(9): 70-73.
[11] 付艳莉,吴群英. 强混合序列部分和之和乘积的几乎处处中心极限定理[J]. J4, 2010, 45(8): 104-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 兵 . 拟无爪图的性质[J]. J4, 2007, 42(10): 111 -113 .
[2] 朱焱,侯建锋,王纪辉 . 图的粘合运算与韧度和孤立韧度的关系[J]. J4, 2006, 41(5): 59 -62 .
[3] 江雪莲,石洪波*. 产生式与判别式组合分类器学习算法[J]. J4, 2010, 45(7): 7 -12 .
[4] 彭艳芬,李宝宗,刘天宝 . 有机气体麻醉活性的构效关系研究[J]. J4, 2006, 41(5): 148 -150 .
[5] 刁科凤,赵 平 . 具有最小连通点对图的C-超图的染色讨论[J]. J4, 2007, 42(2): 56 -58 .
[6] 薛岩波 杨波 陈贞翔. 小波分析在土木工程结构健康监测系统中的应用研究[J]. J4, 2009, 44(9): 28 -31 .
[7] 于少伟. 基于云理论的新的不确定性推理模型研究[J]. J4, 2009, 44(3): 84 -87 .
[8] 郭 磊,于瑞林,田发中 . 一类常规跳变系统的最优控制[J]. J4, 2006, 41(1): 35 -40 .
[9] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[10] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .