《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 77-87.doi: 10.6040/j.issn.1671-9352.0.2023.439
段体城1,许成凯1,鲁紫婕1,贾沛焱2,谢素雅1,杨文志1*
DUAN Ticheng1, XU Chengkai1, LU Zijie1, JIA Peiyan2, XIE Suya1, YANG Wenzhi1*
摘要: 基于误差是φ-混合序列,研究一阶适度爆炸自回归模型回归系数最小二乘(least squares, LS)估计问题。在误差满足弱条件E(u1)=0, E(|u1|4)<∞和φ(n)=O(n-8)时,获得回归系数最小二乘估计的极限分布——柯西分布。通过数据模拟得到的模拟结果与理论结果一致。作为应用,利用一阶适度爆炸模型和自回归系数区间估计,研究英伟达股票2013—2023年的股价增长过程。
中图分类号:
[1] WHITE J S. The limiting distribution of the serial correlation coefficient in the explosive case[J]. The Annals of Mathematical Statistics, 1958, 29(4):1188-1197. [2] ANDERSON T W. On asymptotic distributions of estimates of parameters of stochastic difference equations[J]. The Annals of Mathematical Statistics, 1959, 30(3):676-687. [3] PHILLIPS P C B, MAGDALINOS T. Limit theory for moderate deviations from a unit root[J]. Journal of Econometrics, 2007, 136(1):115-130. [4] PHILLIPS P C B, MAGDALINOS T. Limit theory for moderate deviations from a unit root under weak dependence[M] //PHILLIPS G D A, TZAVALIS E. The Refinement of Econometric Estimation and Test Procedures: Finite Sample and Asymptotic Analysis. Cambridge: Cambridge University Press, 2007:123-162. [5] MAGDALINOS T. Mildly explosive autoregression under weak and strong dependence[J]. Journal of Econometrics, 2012, 169(2):179-187. [6] OH H, LEE S, CHAN N H. Mildly explosive autoregression with mixing innovations[J]. Journal of Korean Statistical Society, 2018, 47(1):41-53. [7] 陆传荣,林正炎. 混合相依变量的极限理论[M]. 北京:科学出版社,1997:2-34. LU Chuanrong, LIN Zhengyan. Limit theory for mixing dependent random variables[M]. Beijing: Science Press, 1997:2-34. [8] FAN Jianqing, YAO Qiwei. Nonlinear time series: nonparametric and parametric methods[M]. New York: Springer, 2003:67-74. [9] 伍欣叶,吴群英. φ混合删失模型中密度函数K-M估计的r-阶相合速度[J]. 山东大学学报(理学版),2014,49(1):105-110. WU Xinye, WU Qunying. The r-th rate of consistency in kernel density estimation for φ mixed random censored samples[J]. Journal of Shandong University(Natural Science), 2014, 49(1):105-110. [10] 邓小芹,吴群英. ρ混合序列完全矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2020, 55(6):32-40. DENG Xiaoqin, WU Qunying. Precise asymptotics of complete moment convergence for ρ-mixing sequence[J]. Journal of Shandong University(Natural Science), 2020, 55(6):32-40. [11] AUE A, HORVÁTH L. A limit theorem for mildly explosive autoregression with stable errors[J]. Econometric Theory, 2007, 23(2):201-220. [12] MAGDALINOS T, PHILLIPS P C B. Limit theory for cointegrated systems with moderately integrated and moderately explosive regressors[J]. Econometric Theory, 2009, 25(2):482-526. [13] WANG Xinghui, WANG Huilong, WANG Hongrui, et al. Asymptotic inference of least absolute deviation estimation for AR(1)processes[J]. Communications in Statistics: Theory and Methods, 2020, 49(4):809-826. [14] LUI Y L, XIAO W L, YU J. Mildly explosive autoregression with anti-persistent errors[J]. Oxford Bulletin of Economics and Statistics, 2021, 83(2):518-539. [15] BUCHMANN B, CHAN N H. Asymptotic theory of least squares estimators for nearly unstable processes under strong dependence[J]. The Annals of Statistics, 2007, 35(5):2001-2017. [16] CHAN N H, LI D, PENG L. Toward a unified interval estimation of autoregressions[J]. Econometric Theory, 2012, 28(3):705-717. [17] KIMT Y, HWANG S Y. Barely-stationary AR(1)sequences near random walk[J]. Journal of the Korean Statistical Society, 2021, 50:832-843. [18] KIM T Y, HWANG S Y, OH H. Explosive AR(1)process with independent but not identically distributed errors[J]. Journal of the Korean Statistical Society, 2020, 49(3):702-721. [19] GAO Min, YANG Wenzhi, WU Shipeng, et al. Asymptotic normality of residual density estimator in stationary and explosive autoregressive models[J]. Computational Statistics & Data Analysis, 2022, 175:107549. [20] ZHOU Jing, LIU Jin, WANG Feifei, et al. Autoregressive model with spatial dependence and missing data[J]. Journal of Business & Economic Statistics, 2022, 40(1):28-34. [21] PHILLIPS P C B, WU Y R, YU J. Explosive behavior in the 1990s Nasdaq: when did exuberance escalate asset values? [J]. International Economic Review, 2011, 52(1):201-226. [22] 李永明,尹长明,韦程东. φ混合误差下回归函数小波估计的渐近正态性[J]. 应用数学学报,2008,31(6):1046-1055. LI Yongming, YIN Changming, WEI Chengdong. On the asymptotic normality for φ-mixing dependent errors of wavelet regression function estimator[J]. Acta Mathematicae Applicatae Sinica, 2008, 31(6):1046-1055. [23] 杨善朝. 混合序列加权和的强收敛性[J]. 系统科学与数学, 1995, 15(3):254-265. YANG Shanchao. Almost sure convergence of weighted sums of mixing sequences[J]. Journal of Systems Science and Mathematical Sciences, 1995, 15(3):254-265. [24] DOUKHAN P, LOUHICHI S. A new weak dependence condition and applications to moment inequalities[J]. Stochastic Processes and their Applications, 1999, 84(2):313-342. |
[1] | 朱慧敏,王梓楠,高敏,杨文志. 方差变点模型CUSUM型估计量的相合性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 106-114. |
[2] | 张翠芸,郭精军,马爱琴. 基于离散观测的次分数Vasicek模型的参数估计[J]. 《山东大学学报(理学版)》, 2023, 58(11): 15-26. |
[3] | 张诗苗,吕艳. 带Lévy噪声的Lotka-Volterra竞争模型的参数估计[J]. 《山东大学学报(理学版)》, 2023, 58(10): 24-31. |
[4] | 邓小芹,吴群英. ρ-混合序列完全矩收敛的精确渐近性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 32-40. |
[5] | 张亚运,吴群英. ρ-混合序列的重对数律矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(4): 13-20. |
[6] | 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19. |
[7] | 伍欣叶,吴群英. 混合删失模型中密度函数K-M估计的r-阶相合速度[J]. 山东大学学报(理学版), 2014, 49(1): 105-110. |
[8] | 唐玲. φ混合序列滑动和过程回归模型的相合性[J]. J4, 2013, 48(3): 89-92. |
[9] | 刘谢进1, 缪柏其2. 平衡损失函数下Bayes线性无偏最小方差估计的优良性[J]. J4, 2011, 46(11): 89-95. |
[10] | 周小双1,2. 错误先验指定下Bayes估计与广义最小二乘估计的相对效率[J]. J4, 2010, 45(9): 70-73. |
[11] | 付艳莉,吴群英. 强混合序列部分和之和乘积的几乎处处中心极限定理[J]. J4, 2010, 45(8): 104-108. |
|