您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 74-78.doi: 10.6040/j.issn.1671-9352.0.2023.441

• • 上一篇    

基于量子逻辑的正交模格新刻画

杨小飞1,肖飞虎1,马盈仓1,辛小龙1,2*   

  1. 1.西安工程大学理学院, 陕西 西安 710048;2.西北大学数学学院, 陕西 西安 710127
  • 发布日期:2025-05-19
  • 通讯作者: 辛小龙(1955— ),男,教授,博士,研究方向为逻辑代数及其上的不确定性理论. E-mail:xlxin@nwu.edu.cn
  • 作者简介:杨小飞(1982— ),男,副教授,博士,研究方向为模糊逻辑和机器学习. E-mail:yangxiaofei2002@163.com*通信作者:辛小龙(1955— ),男,教授,博士,研究方向为逻辑代数及其上的不确定性理论. E-mail:xlxin@nwu.edu.cn
  • 基金资助:
    西安工程大学研究生教育综合改革研究与实践基金资助项目(22yjzg05);国家自然科学基金资助项目(61976130);国家外国专家基金资助项目(DL2023041002L);榆林市产学研基金资助项目(CXY-2022-59)

New characterizations of orthogonal modular lattices based on quantum logic

YANG Xiaofei1, XIAO Feihu1, MA Yingcang1, XIN Xiaolong1,2*   

  1. 1. School of Science, Xian Polytechnic University, Xian 710048, Shaanxi, China;
    2. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China
  • Published:2025-05-19

摘要: 为了研究正交模格中正交模律新的刻画,本文从代数的视角,借助补运算给出了正交模律的等价刻画。利用部分运算加法和减法的互逆性给出了正交模律的等价刻画。 利用全局运算乘法和蕴涵的剩余性给出了正交模律的等价刻画,这些事实揭示正交模律产生的内在规律。通过例子说明正交模格上的全局运算加法和乘法都是非结合的和非交换的。

关键词: 正交模格, 正交格, 布尔代数, 希尔伯特空间, 量子逻辑

Abstract: In order to study some new characterizations of orthomodular law in orthogonal modular lattices, we study orthomodular law from an algebraic perspective. By using complement operations, the reciprocal nature of partial addition and subtraction operations,and residuated property of global multiplication and implication, the equivalent characterizations of orthomodular law are given, respectively. These facts reveal the inherent laws of the generation of orthomodular law. By some examples, it is shown that in general the global operations of addition and multiplication on orthogonal modular lattices are non-associative and non-commutative.

Key words: orthogonal modular lattice, orthogonal lattice, Boolean algebra, Hilbert space, quantum logic

中图分类号: 

  • O153.1
[1] KALMBACH G. Orthomodular lattices[M]. London: Academic Press, 1983.
[2] FREYTES H. An equational theory for σ-complete orthomodular lattices[J]. Soft Computing, 2020, 24:10257-10264.
[3] FAZIO D, LEDDA A, PAOLI F. Residuated structures and orthomodular lattices[J]. Studia Logica, 2021, 9:1201-1239.
[4] WU Yali, YANG Yichuan. Orthomodular lattices as L-algebras[J]. Soft Computing, 2020, 24:14391-14400.
[5] IORGULESCU A. On quantum-MV algebras, part Ⅰ: the orthomodular algebras[J]. Scientific Annals of Computer Science, 2021, 31(2):163-222.
[6] MCDONALD J, BIMBÓ K. Topological duality for orthomodular lattices[J]. Mathematical Logic Quarterly, 2023, 69(2):174-191.
[7] BONZIO S, CHAJDA I. A note on orthomodular lattices[J]. International Journal of Theoretical Physics, 2017, 56:3740-3743.
[8] BLYTH T S. Lattices and ordered algebraic structures[M]. London: Springer, 2005.
[1] 赵马盼,樊丰丽,颉永建. Heyting代数的布尔原子及其应用[J]. 《山东大学学报(理学版)》, 2020, 55(5): 71-80.
[2] 曹发生,肖方. 模态代数的主同余[J]. 《山东大学学报(理学版)》, 2020, 55(2): 104-108.
[3] 刘莉君. 布尔代数上triple-δ-导子的特征及性质[J]. 山东大学学报(理学版), 2017, 52(11): 95-99.
[4] 刘卫锋. 布尔代数的软商布尔代数[J]. 山东大学学报(理学版), 2015, 50(08): 57-61.
[5] 刘卫锋,杜迎雪,许宏伟. 区间软布尔代数[J]. 山东大学学报(理学版), 2014, 49(2): 104-110.
[6] 冯敏1,辛小龙1*,李毅君1,2. MV-代数上的f导子和g导子[J]. 山东大学学报(理学版), 2014, 49(06): 50-56.
[7] 刘卫锋. 软布尔代数[J]. J4, 2013, 48(8): 56-62.
[8] 刘春辉1,2. 布尔代数的区间值(∈,∈∨ q)模糊子代数[J]. J4, 2013, 48(10): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!