《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 118-126.doi: 10.6040/j.issn.1671-9352.0.2023.509
• • 上一篇
景月,侯强*
JING Yue, HOU Qiang*
摘要: 为了研究2023年猴痘在中国传播的规律,首先基于泊松过程的贝叶斯计算方法估计了中国猴痘瞬时再生数,发现瞬时再生数在8月7日后持续低于1,且在8月19日后出现显著下降;其次建立带隔离措施的SEIQR模型,估计疫情初期的基本再生数为1.433,患者在医疗机构的隔离率为0.42;最后,建立SEIQ1Q2R模型,并用于评估对染病者实行医疗机构隔离或居家隔离的效果,得到该措施下基本再生数下降为0.344,在医疗机构的隔离率为0.75,居家隔离率为1.48。该措施下基本再生数明显小于阈值1,表明调整防控措施后,中国猴痘疫情得到有效控制。
中图分类号:
[1] 廖树心,张勇. 人感染猴痘病毒流行概况及其诊断和治疗研究进展[J]. 中国病毒病杂志,2023,13(4):304-309. LIAO Shuxin, ZHANG Yong. Epidemiologic situation of human infection with monkeypox virus and research progress in diagnosis and treatment[J]. Chinese Journal of Viral Diseases, 2023, 13(4):304-309. [2] 姜婷婷,陈祥生. 全球猴痘流行状况及趋势[J]. 中国麻风皮肤病杂志,2023,39(7):535-537. JIANG Tingting, CHEN Xiangsheng. Global epidemiology and trends of monkeypox[J]. China Journal of Leprosy and Skin Diseases, 2023, 39(7):535-537. [3] 景伟,房永祥,何小兵, 等. 猴痘流行现状与外溢动物风险及我国的防控策略和措施[J]. 中国兽医科学,2024,54(1):101-108. JING Wei, FANG Yongxiang, HE Xiaobing, et al. Mpox epidemic status, risk of spilt to animals and its prevention strategies and measures in China[J]. Veterinary Science in China, 2024, 54(1):101-108. [4] PETER O J, KUMAR S, KUMARI N, et al. Transmission dynamics of monkeypox virus: a mathematical modelling approach[J]. Model Earth Syst Environ, 2022, 8(3):3423-3434. [5] MESADY A E, ELSONBATY A, ADEL W. On nonlinear dynamics of a fractional order monkeypox virus model[J]. Chaos, Solitons & Fractals, 2022, 164:112716. [6] JAMES O P, ABIODUN F O, MAYOWA M O, et al. Fractional order mathematical model of monkeypox transmission dynamics[J]. Physica Scripta, 2022, 97(8):084005. [7] YUAN Pei, TAN Yi, YANG Liu, et al. Assessing transmission risks and control strategy for monkeypox as an emerging zoonosis in a metropolitan area[J]. Journal of medical virology, 2023, 95(1):e28137. [8] ZHANG Xusheng, SEMA M, HAMISH M, et al. Transmission dynamics and effect of control measures on the 2022 outbreak of Mpox among gay, bisexual, and other men who have sex with men in England: a mathematical modelling study[J]. The Lancet Infectious Diseases, 2023, 24(1):65-74. [9] MIURA F, VAN E C E, BACKER J A, et al. Estimated incubation period for monkeypox cases confirmed in the Netherlands, May 2022[J]. European Communicable Disease Bulletin, 2022, 27(24):2200448. [10] MADEWELL Z J, CHARNIGA K, MASTERS N B, et al. Seria linterval and incubation period estimates of monkeypox virus infection in 12 jurisdictions, United States, May-August 2022[J]. Emerging Infectious Diseases, 2023, 29(4): 818-821. [11] GUZZETTA G, MAMMONE A, FERRARO F, et al. Early estimates of monkeypox incubation period, generation time, and reproduction number, Italy, May-June 2022[J]. Emerging Infectious Diseases, 2022, 28(10):2078-2081. [12] 欧阳泽龙,李锦琼,汪官曌,等. 基于时间序列模型的全球猴痘周新增病例预测[J/OL]. 中国动物传染病学报,2023. https://doi.org/10.19958/j.cnki.cn31-2031/s.20230906.004. OUYANG Zelong, LI Jinqiong, WANG Guanzhao, et al. Global prediction of weekly number of new Mpox cases based on a time series model[J/OL]. Chinese Journal of Animal Infectious Diseases, 2023. https://doi.org/10.19958/j.cnki.cn31-2031/s.20230906.004. [13] LIU Tuoyu, YANG Shan, LUO Boyu, et al. Anticipating the transmissibility of the 2022 Mpox outbreak[J]. Journal of Medical Virology, 2023, 95(3): e28683. [14] BALA D, HOSSAIN M S, GU N J, et al. Monkeynet: a robust deep convolutional neural network for monkeypox disease detection and classification[J]. Neural Networks, 2023, 161:757-775. [15] 郝艳荣. 几类传染病模型的稳定性研究[D]. 天津:天津师范大学,2023. HAO Yanrong. Stability studies of several infectious disease models[D]. Tianjin: Tianjin Normal University, 2023. [16] GAO Shan, ZENG Zan, ZHAI Yujia, et al. Driving effect of multiplex factors on Mpox in global high-risk region, implication for Mpox based on one health concept[J]. One Health, 2023, 17:100597. [17] World Health Organization(WHO). 2022—2023 Mpox outbreak: global trends[EB/OL].(2023)[2024-07-08]. https://worldhealthorg. shinyapps. io/mpx_global/. [18] CORI A, FERGUSON N M, FRASER C, et al. A new framework and software to estimate time-varying reproduction numbers during epidemics[J]. American Journal of Epidemiology, 2013, 178(9):1505-1512. [19] 王姿月,张子卉,吴文学,等. 猴痘的诊断、预防和治疗[J]. 畜牧兽医学报,2023,54(8):3195-3205. WANG Ziyue, ZHANG Zihui, WU Wenxue, et al. Monkeypox: diagnosis, prevention and treatments[J]. Chinese Journal of Animal and Veterinary Sciences, 2023, 54(8):3195-3205. [20] 蔡鹏,殷建华,张宏伟. 猴痘病原学、流行病学特征及其防控策略[J]. 上海预防医学,2022,34(10):1044-1052. CAI Peng, YIN Jianhua, ZHANG Hongwei. Etiological and epidemiological characteristics of monkeypox and its prevention strategies[J]. Shanghai Journal of Preventive Medicine, 2022, 34(10):1044-1052. [21] 国家卫生健康委员会. 猴痘防控技术指南(2022年版)[J]. 中国病毒病杂志,2022,12(4):245-254. National Health Commission of the Peoples Republic of China. Technical guidelines for monkeypox control in China(2022 version)[J]. Chinese Journal of Viral Diseases, 2022, 12(4):245-254. [22] 王文鑫,福军亮,王福生. 猴痘疫情现状及防控挑战[J]. 传染病信息,2022,35(3):197-201. WANG Wenxin, FU Junliang, WANG Fusheng. Progression and challenges in prevention and control of monkeypox epidemic[J]. Infectious Disease Information, 2022, 35(3):197-201. [23] 笃梦雪,严明明,李蔓兮,等. 2023年9月中国需关注的突发公共卫生事件风险评估[J]. 疾病监测,2023,38(9):1025-1028. ZHU Mengxue, YAN Mingming, LI Manxi, et al. Risk assessment of public health emergencies concerned in China, September 2023[J]. Disease Surveillance, 2023, 38(9):1025-1028. [24] 中国疾病预防控制中心. 关于印发猴痘防控方案的通知[EB/OL].(2023-07-26)[2024-07-26]. https://www. chinacdc. cn/jkzt/crb/zl/szkb_13037/jswj/202307/t20230727_268170.html. Chinese Center for Disease Control and Prevention. Notice on the issuance of monkeypox prevention and control program[EB/OL].(2023-07-26)[2024-07-26]. https://www.chinacdc.cn/jkzt/crb/zl/szkb_13037/jswj/202307/t20230727_268170.html. |
[1] | 韩梦洁,刘俊利. 具有不完全接种的反应扩散禽流感模型[J]. 《山东大学学报(理学版)》, 2023, 58(10): 106-121. |
[2] | 陈刚,张睿. 一类具有预防接种的两菌株共感模型的传染病动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 84-96. |
[3] | 李晓伟,李桂花. 考虑环境病毒影响的COVID-19模型的动力学性态研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 10-15. |
[4] | 王非,杨亚莉,金英姬,曹书苗. 具有两个感染阶段和治疗及非线性发生率的HIV/AIDS模型的研究[J]. 《山东大学学报(理学版)》, 2019, 54(10): 67-73. |
[5] | 董婵, 张菊平, 李有文. 两斑块间具有种群动力学的#br# 疟疾传播模型研究[J]. 山东大学学报(理学版), 2014, 49(06): 74-78. |
[6] | 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74. |
|